Patents by Inventor Jörg Troger

Jörg Troger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8908729
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output powers are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding (front) end section degradation at very high light output powers by controlling the current flow in the laser diode in a defined way. This is achieved by controlling the carrier injection, i.e. the injection current, into the laser diode in a novel way by creating single current injection points along the laser diode's longitudinal extension, e.g. along the waveguide. Further, the supply current/voltage of each single or group of current injection point(s) may be separately regulated, further enhancing controllability of the carrier injection.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: December 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Patent number: 8831062
    Abstract: A semiconductor laser diode comprises a semiconductor body having an n-region and a p-region laterally spaced apart within the semiconductor body. The laser diode is provided with an active region between the n-region and the p-region having a front end and a back end section, an n-metallization layer located adjacent the n-region and having a first injector for injecting current into the active region, and a p-metallization layer opposite to the n-metallization layer and adjacent the p-region and having a second injector for injecting current into the active region. The thickness and/or width of at least one metallization layer is chosen so as to control the current injection in a part of the active region near at least one end of the active region compared to the current injection in another part of the active region. The width of the at least one metallization layer is larger than a width of the active region.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 9, 2014
    Assignee: II-VI Laser Enterprise GmbH
    Inventors: Hans-Ulrich Pfeiffer, Andrew Cannon Carter, Jörg Troger, Norbert Lichtenstein, Michael Schwarz, Abram Jakubowicz, Boris Sverdlov
  • Publication number: 20130070800
    Abstract: A semiconductor laser diode comprises a semiconductor body having an n-region and a p-region laterally spaced apart within the semiconductor body. The laser diode is provided with an active region between the n-region and the p-region having a front end and a back end section, an n-metallisation layer located adjacent the n-region and having a first injector for injecting current into the active region, and a p-metallisation layer opposite to the n-metallisation layer and adjacent the p-region and having a second injector for injecting current into the active region. The thickness and/or width of at least one metallisation layer is chosen so as to control the current injection in a part of the active region near at least one end of the active region compared to the current injection in another part of the active region. The width of the at least one metallisation layer is larger than a width of the active region.
    Type: Application
    Filed: April 6, 2011
    Publication date: March 21, 2013
    Inventors: Hans-Ulrich Pfeiffer, Andrew Cannon Carter, Jörg Troger, Norbert Lichtenstein, Michael Schwarz, Abram Jakubowicz, Boris Sverdlov
  • Publication number: 20130028283
    Abstract: There is described a high speed vertical-cavity surface-emitting laser (VCSEL) comprising a substrate and first and second distributed Bragg reflectors (DBRs) disposed on the substrate, each comprising a stack of layers of alternating refractive index. A resonant cavity is disposed between the DBRs and an active region disposed in the resonant cavity. The resonant cavity is formed of material having low refractive index and has an optical thickness in a direction perpendicular to the substrate of ½?, where ? is the wavelength of light emitted by the VCSEL.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 31, 2013
    Inventors: Wolfgang Kaiser, Jörg Troger, Michael Moser
  • Patent number: 8199784
    Abstract: A laser light source comprises a semiconductor laser adapted for pulsed operation, a partially transmitting wavelength selective light reflector. The semiconductor laser comprises a front facet and a back facet. The front facet and the back facet define an internal laser cavity. The internal laser cavity comprises a laser active medium. The partially transmitting wavelength selective light reflector has a peak reflectivity within a gain bandwidth of said laser active medium. The wavelength selective light reflector and the back facet define an external laser cavity. A roundtrip time of light in the external laser cavity is about 20 nanoseconds or less. A full width half maximum bandwidth of the wavelength selective light reflector is adapted to accommodate at least 12 longitudinal modes of the internal laser cavity and at least 250 longitudinal modes of the external laser cavity.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 12, 2012
    Assignee: Oclaro Technology Limited
    Inventors: Stefan Mohrdiek, Joerg Troger, Nicolai Matuschek
  • Patent number: 8111727
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output power, are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding degradation of such laser diodes at very high light output powers by controlling the current flow in the laser diode in a defined way. The minimization or avoidance of (front) end section degradation of such laser diodes significantly increases long-term stability compared to prior art designs. This is achieved by controlling the carrier injection into the laser diode in the vicinity of its facets in such a way that abrupt injection current peaks are avoided.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 7, 2012
    Assignee: Oclaro Technology Limited
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20100220762
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output power, are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding degradation of such laser diodes at very high light output powers by controlling the current flow in the laser diode in a defined way. The minimization or avoidance of (front) end section degradation of such laser diodes significantly increases long-term stability compared to prior art designs. This is achieved by controlling the carrier injection into the laser diode in the vicinity of its facets in such a way that abrupt injection current peaks are avoided.
    Type: Application
    Filed: June 28, 2006
    Publication date: September 2, 2010
    Applicant: BOOKHAM TECHNOLOGY PLC
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20100189152
    Abstract: Semiconductor laser diodes, particularly broad area single emitter (BASE) laser diodes of high light output powers are commonly used in opto-electronics. Light output power and stability of such laser diodes are of crucial interest and any degradation during normal use is a significant disadvantage. The present invention concerns an improved design of such laser diodes, the improvement in particular significantly minimizing or avoiding (front) end section degradation at very high light output powers by controlling the current flow in the laser diode in a defined way. This is achieved by controlling the carrier injection, i.e. the injection current, into the laser diode in a novel way by creating single current injection points along the laser diode's longitudinal extension, e.g. along the waveguide. Further, the supply current/voltage of each single or group of current injection point(s) may be separately regulated, further enhancing controllability of the carrier injection.
    Type: Application
    Filed: June 28, 2006
    Publication date: July 29, 2010
    Applicant: BOOKHAM TECHNOLOGY PLC
    Inventors: Christoph Harder, Abram Jakubowicz, Nicolai Matuschek, Joerg Troger, Michael Schwarz
  • Publication number: 20090097511
    Abstract: A laser light source comprises a semiconductor laser adapted for pulsed operation, a partially transmitting wavelength selective light reflector. The semiconductor laser comprises a front facet and a back facet. The front facet and the back facet define an internal laser cavity. The internal laser cavity comprises a laser active medium. The partially transmitting wavelength selective light reflector has a peak reflectivity within a gain bandwidth of said laser active medium. The wavelength selective light reflector and the back facet define an external laser cavity. A roundtrip time of light in the external laser cavity is about 20 nanoseconds or less. A full width half maximum bandwidth of the wavelength selective light reflector is adapted to accommodate at least 12 longitudinal modes of the internal laser cavity and at least 250 longitudinal modes of the external laser cavity.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 16, 2009
    Inventors: Stefan MOHRDIEK, Joerg Troger, Nicolai Matuschek