Patents by Inventor Jürgen Schawe

Jürgen Schawe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9816907
    Abstract: A sample is analyzed by temperature-modulated thermogravimetric analysis (TMTGA), using a thermogravimetric analysis (TGA) instrument. The TGA instrument comprises a furnace arranged in a furnace housing and an electronic balance with a load receiver arranged in a balance housing, wherein the load receiver extends into the furnace housing. A measuring position is arranged at one end of the load receiver within the furnace housing. A control unit controls the balance and/or the furnace. The TMTGA method includes at least using the TGA instrument to subject the sample to a temperature program that varies the temperature of the furnace and provides temperature-time setpoints for controlling the sample temperature, measuring the mass change of the sample as a function of time, and determining at least one kinetic parameter of the sample based on mass change. The temperature program may be stochastic and/or event-controlled in nature.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: November 14, 2017
    Assignee: Mettler-Toledo GmbH
    Inventor: Jürgen Schawe
  • Publication number: 20150323438
    Abstract: A sample is analyzed by temperature-modulated thermogravimetric analysis (TMTGA), using a thermogravimetric analysis (TGA) instrument. The TGA instrument comprises a furnace arranged in a furnace housing and an electronic balance with a load receiver arranged in a balance housing, wherein the load receiver extends into the furnace housing. A measuring position is arranged at one end of the load receiver within the furnace housing. A control unit controls the balance and/or the furnace. The TMTGA method includes at least using the TGA instrument to subject the sample to a temperature program that varies the temperature of the furnace and provides temperature-time setpoints for controlling the sample temperature, measuring the mass change of the sample as a function of time, and determining at least one kinetic parameter of the sample based on mass change. The temperature program may be stochastic and/or event-controlled in nature.
    Type: Application
    Filed: May 6, 2015
    Publication date: November 12, 2015
    Inventor: Jürgen Schawe
  • Patent number: 7470058
    Abstract: Substance analysis based upon observed reponse to excitation described herein. When a substance is subjected to an excitation and a response is observed, a relational evaluation is made based on the concept that the parameters of a mathematical model may be determined, which emulate the relationship between the excitation and the response, and that characteristic substance properties are subsequently determined/calculated from the time series of estimated values of the mathematical model.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: December 30, 2008
    Assignee: Mettler-Toledo AG
    Inventors: Thomas Hütter, Christoph Heitz, Jürgen Schawe
  • Publication number: 20060256836
    Abstract: Substance analysis based upon observed reponse to excitation described herein. When a substance is subjected to an excitation and a response is observed, a relational evaluation is made based on the concept that the parameters of a mathematical model may be determined, which emulate the relationship between the excitation and the response, and that characteristic substance properties are subsequently determined/calculated from the time series of estimated values of the mathematical model.
    Type: Application
    Filed: July 2, 2004
    Publication date: November 16, 2006
    Inventors: Thomas Hütter, Christoph Heitz, Jürgen Schawe
  • Patent number: 6551835
    Abstract: A method and apparatus for thermally analyzing a sample of a material by detecting a heat flow between the sample and a heat source (1, 2) and ,evaluating a functional relation between the measured heat flow and an associated temperature is based on controlling the heating power of the heat source (1, 2) so as to cause the heat source to follow a temperature program (Tp) as a function of time superposed with a stochastic variation (FSIP), (FIG. 2).
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: April 22, 2003
    Assignee: Mettler-Toledo GmbH
    Inventors: Jürgen Schawe, Ingo Alig, Dirk Lellinger