Patents by Inventor Jörn WOLLENZIN

Jörn WOLLENZIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128723
    Abstract: A tunable laser including: an optical cavity including a first and second end mirrors, and a center mirror; a quantum well gain region between the end mirrors; and a transparent heat spreader bonded to the quantum well gain region; wherein the optical cavity is configured to generate resonant laser radiation between the end mirrors; the quantum well gain region includes at least one quantum well that is substantially aligned with an antinode of the resonant laser radiation and is located at a fixed distance to the center mirror; the distance from the first end mirror to the center mirror is optimized to maintain maximum output power, and the distance from the second end mirror to the center mirror is adjustable for tuning the laser to a desired output wavelength; the center mirror maintains an antinode of the resonant radiation at a fixed phase relationship with the center mirror.
    Type: Application
    Filed: July 13, 2023
    Publication date: April 18, 2024
    Inventors: Jörn Wollenzin, Johannes Dühn, Michael Verges, Matt Kirchner
  • Patent number: 10743766
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: August 18, 2020
    Assignee: THORLABS GMBH
    Inventors: Dierck Hillmann, Gereon Hüttmann, Gesa Lilith Franke, Helge Sudkamp, Laura Hinkel, Peter Koch, Jörn Wollenzin
  • Publication number: 20180368680
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Inventors: Dierck HILLMANN, Gereon HÜTTMANN, Gesa Lilith FRANKE, Helge SUDKAMP, Laura HINKEL, Peter KOCH, Jörn WOLLENZIN
  • Patent number: 10070788
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: September 11, 2018
    Assignee: THORLABS GMBH
    Inventors: Dierck Hillmann, Gereon Hüttmann, Gesa Lilith Franke, Helge Sudkamp, Laura Hinkel, Peter Koch, Jörn Wollenzin
  • Patent number: 9989749
    Abstract: Disclosed are several technical approaches of using low coherence interferometry techniques to create an autofocus apparatus for optical microscopy. These approaches allow automatic focusing on thin structures that are positioned closely to reflective surfaces and behind refractive material like a cover slip, and automated adjustment of focus position into the sample region without disturbance from reflection off adjacent surfaces. The measurement offset induced by refraction of material that covers the sample is compensated for. Proposed are techniques of an instrument that allows the automatic interchange of imaging objectives in a low coherence interferometry autofocus system, which is of major interest in combination with TDI (time delay integration) imaging, confocal and two-photon fluorescence microscopy.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 5, 2018
    Assignee: Thorlabs, Inc.
    Inventors: Alex Cable, Jörn Wollenzin, Ross Johnstone, Kirk Gossage, Jeffrey S. Brooker, Jason Mills, James Jiang, Dierck Hillmann
  • Patent number: 9869852
    Abstract: Disclosed are several technical approaches of using low coherence interferometry techniques to create an autofocus apparatus for optical microscopy. These approaches allow automatic focusing on thin structures that are positioned closely to reflective surfaces and behind refractive material like a cover slip, and automated adjustment of focus position into the sample region without disturbance from reflection off adjacent surfaces. The measurement offset induced by refraction of material that covers the sample is compensated for. Proposed are techniques of an instrument that allows the automatic interchange of imaging objectives in a low coherence interferometry autofocus system, which is of major interest in combination with TDI (time delay integration) imaging, confocal and two-photon fluorescence microscopy.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: January 16, 2018
    Assignee: THORLABS, INC.
    Inventors: Alex Cable, Jörn Wollenzin, Ross Johnstone, Kirk Gossage, Jeffrey S. Brooker, Jason Mills, James Jiang, Dierck Hillmann
  • Publication number: 20170343787
    Abstract: Disclosed are several technical approaches of using low coherence interferometry techniques to create an autofocus apparatus for optical microscopy. These approaches allow automatic focusing on thin structures that are positioned closely to reflective surfaces and behind refractive material like a cover slip, and automated adjustment of focus position into the sample region without disturbance from reflection off adjacent surfaces. The measurement offset induced by refraction of material that covers the sample is compensated for. Proposed are techniques of an instrument that allows the automatic interchange of imaging objectives in a low coherence interferometry autofocus system, which is of major interest in combination with TDI (time delay integration) imaging, confocal and two-photon fluorescence microscopy.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Alex CABLE, Jörn Wollenzin, Ross Johnstone, Kirk Gossage, Jeffrey S. Brooker, Jason Mills, James Jiang, Dierck Hillmann
  • Publication number: 20160216501
    Abstract: Disclosed are several technical approaches of using low coherence interferometry techniques to create an autofocus apparatus for optical microscopy. These approaches allow automatic focusing on thin structures that are positioned closely to reflective surfaces and behind refractive material like a cover slip, and automated adjustment of focus position into the sample region without disturbance from reflection off adjacent surfaces. The measurement offset induced by refraction of material that covers the sample is compensated for. Proposed are techniques of an instrument that allows the automatic interchange of imaging objectives in a low coherence interferometry autofocus system, which is of major interest in combination with TDI (time delay integration) imaging, confocal and two-photon fluorescence microscopy.
    Type: Application
    Filed: January 13, 2016
    Publication date: July 28, 2016
    Inventors: Alex CABLE, Jörn Wollenzin, Ross Johnstone, Kirk Gossage, Jeffrey S. Brooker, Jason Mills, James Jiang, Dierck Hillmann
  • Publication number: 20150216412
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 6, 2015
    Inventors: Dierck HILLMANN, Gereon HÜTTMANN, Gesa Lilith FRANKE, Helge SUDKAMP, Laura HINKEL, Peter KOCH, Jörn WOLLENZIN