Patents by Inventor J. Rodney Walton

J. Rodney Walton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150365147
    Abstract: Pilots suitable for use in MIMO systems and capable of supporting various functions are described. The various types of pilot include—a beacon pilot, a MIMO pilot, a steered reference or steered pilot, and a carrier pilot. The beacon pilot is transmitted from all transmit antennas and may be used for timing and frequency acquisition. The MIMO pilot is transmitted from all transmit antennas but is covered with different orthogonal codes assigned to the transmit antennas. The MIMO pilot may be used for channel estimation. The steered reference is transmitted on specific eigenmodes of a MIMO channel and is user terminal specific. The steered reference may be used for channel estimation. The carrier pilot may be transmitted on designated subbands/antennas and may be used for phase tracking of a carrier signal. Various pilot transmission schemes may be devised based on different combinations of these various types of pilot.
    Type: Application
    Filed: August 26, 2015
    Publication date: December 17, 2015
    Inventors: John Ketchum, Mark Wallace, J. Rodney Walton, Steven Howard
  • Patent number: 9144107
    Abstract: Embodiments describe registration in a wireless communication system. A method includes wirelessly transmitting over a WWAN a first registration message from a mobile device, wirelessly transmitting through the WWAN a second registration message to a WLAN access point and receiving at the mobile device access through the WLAN access point. According to another embodiment is a method for constructing a self-configuring ad-hoc network. The method can include receiving a GPS coordinate from a WWAN channel node at a management system and creating an initial topography based at least in part on the GPS coordinate to achieve a network connectivity with diverse routes between a plurality of nodes.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 22, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Subra Dravida, J. Rodney Walton, Jr., Sanjiv Nanda, Shravan K. Surineni
  • Patent number: 9048892
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: June 2, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 9031097
    Abstract: A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: May 12, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Publication number: 20150085751
    Abstract: Certain embodiments of the present disclosure relate to a method for increasing a capacity in a peer-to-peer (P2P) wireless network. A scheme has been proposed in which well-connected nodes of the P2P wireless network can be exploited in a manner that increases the overall connectivity of all the nodes in the network.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: J. Rodney Walton, John W Ketchum, Oliver Michaelis
  • Publication number: 20150085703
    Abstract: Certain embodiments of the present disclosure relate to a method for increasing a capacity in a peer-to-peer (P2P) wireless network. A scheme has been proposed in which well-connected nodes of the P2P wireless network can be exploited in a manner that increases the overall connectivity of all the nodes in the network.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: J. Rodney Walton, John W. Ketchum, Oliver Michaelis
  • Patent number: 8942130
    Abstract: For a peer-to-peer call in an ad hoc wireless network, a wireless device performs discovery of a target wireless device, performs authentication of the target wireless device and generates a session key (e.g., using a pre-shared key or a certificate provisioned on the wireless device), forms an ad hoc wireless network with the target wireless device, and communicates peer-to-peer with the target wireless device via the ad hoc wireless network. The wireless device may perform discovery with a list of identifiers for wireless devices designated to communicate with this wireless device. The wireless device may derive a service set identifier (SSID) used to identify the ad hoc wireless network based on its user-specific identifier (e.g., its phone number) and/or a user-specific identifier for the target wireless device. The wireless device may also performs IP address discovery using the user-specific identifier for the target wireless device.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 27, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Ravi Kumar, J. Rodney Walton, Qiang Fu, Subrahmanyam Dravida
  • Patent number: 8942133
    Abstract: For a peer-to-peer call in an ad hoc wireless network, a wireless device performs discovery of a target wireless device, performs authentication of the target wireless device and generates a session key (e.g., using a pre-shared key or a certificate provisioned on the wireless device), forms an ad hoc wireless network with the target wireless device, and communicates peer-to-peer with the target wireless device via the ad hoc wireless network. The wireless device may perform discovery with a list of identifiers for wireless devices designated to communicate with this wireless device. The wireless device may derive a service set identifier (SSID) used to identify the ad hoc wireless network based on its user-specific identifier (e.g., its phone number) and/or a user-specific identifier for the target wireless device. Other aspects, embodiments, and features are also claimed and described.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: January 27, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Ravi Kumar, J. Rodney Walton, Qiang Fu, Subrahmanyam Dravida
  • Patent number: 8934329
    Abstract: For transmit diversity in a multi-antenna OFDM system, a transmitter encodes, interleaves, and symbol maps traffic data to obtain data symbols. The transmitter processes each pair of data symbols to obtain two pairs of transmit symbols for transmission from a pair of antennas either (1) in two OFDM symbol periods for space-time transmit diversity or (2) on two subbands for space-frequency transmit diversity. NT·(NT?1)/2 different antenna pairs are used for data transmission, with different antenna pairs being used for adjacent subbands, where NT is the number of antennas. The system may support multiple OFDM symbol sizes. The same coding, interleaving, and modulation schemes are used for different OFDM symbol sizes to simplify the transmitter and receiver processing. The transmitter performs OFDM modulation on the transmit symbol stream for each antenna in accordance with the selected OFDM symbol size. The receiver performs the complementary processing.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: January 13, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8934462
    Abstract: Certain embodiments of the present disclosure relate to a method for increasing a capacity in a peer-to-peer (P2P) wireless network. A scheme has been proposed in which well-connected nodes of the P2P wireless network can be exploited in a manner that increases the overall connectivity of all the nodes in the network.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: January 13, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Oliver Michaelis
  • Patent number: 8913529
    Abstract: A multiple-access MIMO WLAN system that employs MIMO, OFDM, and TDD. The system (1) uses a channel structure with a number of configurable transport channels, (2) supports multiple rates and transmission modes, which are configurable based on channel conditions and user terminal capabilities, (3) employs a pilot structure with several types of pilot (e.g., beacon, MIMO, steered reference, and carrier pilots) for different functions, (4) implements rate, timing, and power control loops for proper system operation, and (5) employs random access for system access by the user terminals, fast acknowledgment, and quick resource assignments. Calibration may be performed to account for differences in the frequency responses of transmit/receive chains at the access point and user terminals. The spatial processing may then be simplified by taking advantage of the reciprocal nature of the downlink and uplink and the calibration.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, Mark S. Wallace, John W. Ketchum, Steven J. Howard
  • Patent number: 8903440
    Abstract: An ad hoc network with distributed hierarchical scheduling is disclosed. In one aspect, stations in a network mesh detect interfering neighbor stations and form interference lists. Stations transmit their interference lists. Scheduling stations schedule allocations for child stations in response to interference lists, received remote allocations, or a combination thereof. Coordination messages are transmitted including frame structure, allocations, and interference lists, among others. In another aspect, an ad hoc mesh network may be organized into a tree topology. In an example wireless backhaul network, this matches traffic flow. Distributed, hierarchical scheduling is provided where parents schedule communication with children while respecting already scheduled transmissions to/from interferers and to/from interferers of their respective children.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: December 2, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Sanjiv Nanda, J. Rodney Walton
  • Patent number: 8873365
    Abstract: For transmit diversity in a multi-antenna OFDM system, a transmitter encodes, interleaves, and symbol maps traffic data to obtain data symbols. The transmitter processes each pair of data symbols to obtain two pairs of transmit symbols for transmission from a pair of antennas either (1) in two OFDM symbol periods for space-time transmit diversity or (2) on two subbands for space-frequency transmit diversity. NT·(NT?1)/2 different antenna pairs are used for data transmission, with different antenna pairs being used for adjacent subbands, where NT is the number of antennas. The system may support multiple OFDM symbol sizes. The same coding, interleaving, and modulation schemes are used for different OFDM symbol sizes to simplify the transmitter and receiver processing. The transmitter performs OFDM modulation on the transmit symbol stream for each antenna in accordance with the selected OFDM symbol size. The receiver performs the complementary processing.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 28, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: J. Rodney Walton, John W. Ketchum, Mark S. Wallace, Steven J. Howard
  • Patent number: 8855226
    Abstract: Rate selection with margin sharing in a system with independent data stream rates is presented. Signal-to-Noise Ratio (SNR) estimates are obtained for each stream. Rates are selected for the streams based on the SNR estimates, such that at least one data stream has an SNR margin below a threshold, each remaining data stream has an SNR margin above a respective threshold, and the total SNR margin for all streams is above a total threshold. For rate selection with margin sharing with a vector-quantized rate set, SNR estimates are obtained for usable transmission channels. The total SNR margin is determined for each rate combination based on the estimates. Each rate combination is associated with a specific number of data streams to transmit, a specific rate for each data stream, and a specific overall throughput. The combination with the highest overall throughput and non-negative total SNR margin is selected.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: October 7, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Irina Medvedev, J. Rodney Walton
  • Patent number: 8751576
    Abstract: Certain embodiments of the present disclosure relate to a method and an apparatus for managing and optimizing service discovery in a peer-to-peer (P2P) wireless network. Nodes of the P2P network advertise their capabilities to their peers in the form of services. Efficient propagation and management of node's services to other nodes is proposed in the present disclosure.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: June 10, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Oliver Michaelis, J. Rodney Walton, John W. Ketchum
  • Publication number: 20140056293
    Abstract: For a peer-to-peer call in an ad hoc wireless network, a wireless device performs discovery of a target wireless device, performs authentication of the target wireless device and generates a session key (e.g., using a pre-shared key or a certificate provisioned on the wireless device), forms an ad hoc wireless network with the target wireless device, and communicates peer-to-peer with the target wireless device via the ad hoc wireless network. The wireless device may perform discovery with a list of identifiers for wireless devices designated to communicate with this wireless device. The wireless device may derive a service set identifier (SSID) used to identify the ad hoc wireless network based on its user-specific identifier (e.g., its phone number) and/or a user-specific identifier for the target wireless device. Other aspects, embodiments, and features are also claimed and described.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Ravi KUMAR, J. Rodney WALTON, Qiang Fu, Subrahmanyam DRAVIDA
  • Patent number: 8639242
    Abstract: Certain embodiments of the present disclosure relate to a method and an apparatus for registration and service announcements in peer-to-peer wireless networks to increase capacity of such networks. The present disclosure proposes a hybrid registration mechanism allowing a peer-to-peer node to leverage an administrative architecture of a neighboring cellular system.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: January 28, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Oliver Michaelis, J. Rodney Walton, John W. Ketchum
  • Patent number: 8634438
    Abstract: Systems and methods for performing a handoff of an access terminal from a macro node to a femto node are disclosed. To direct handoff of the access terminal, an identity of the femto node is determined. A femto node provided may be identified by at least a difference between the offset of a first pilot signal and the offset of a second pilot signal.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Sanjiv Nanda, Mehmet Yavuz, J. Rodney Walton, Peter J. Black
  • Patent number: 8619620
    Abstract: Techniques to select a suitable transmission mode for a data transmission in a multi channel communication system with multiple spatial channels having varying SNRs are presented in this disclosure. For certain embodiments, a closed-loop technique may be applied, in which back-off factors used to calculate an effective SNR value fed back to a transmitter are adjusted. An open-loop rate control scheme is also presented in which a transmitter may select a data rate and number of streams based on whether transmitted packets are received in error at a receiver.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: December 31, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Irina Medvedev, John W. Ketchum, J. Rodney Walton
  • Patent number: 8615053
    Abstract: Techniques for performing mode and rate control for a MIMO transmission are described. For mode selection, the use of an eigensteering mode is permitted if a first set of at least one criterion is satisfied. The eigensteering mode is selected for data transmission if a second set of at least one criterion is satisfied, and an unsteered mode is selected otherwise. For rate selection, SNR estimates are derived for data streams to potentially transmit, e.g., based on channel estimates and/or data symbol estimates. The number of data streams to transmit as well as at least one rate for at least one data stream to transmit are selected based on the SNR estimates and at least one backoff factor. The backoff factor(s) are adjusted based on status of received packets. The at least one rate may be adjusted based on the age of rate information. Other aspects, features, and embodiments are also claimed and described.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 24, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Mark S Wallace, J Rodney Walton