Patents by Inventor J. Scott Rodgers

J. Scott Rodgers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8309371
    Abstract: A system and method include forming an optical cavity by positioning a photonic crystal a predetermined distance from a substrate, and creating, within the cavity, a standing wave having a substantially flat wavefront. The standing wave may be created by applying an input wave to a first surface of the photonic crystal. The predetermined distance may be such that a peak intensity of the standing wave is proximate to or a calculated distance from the substrate surface. The peak intensity may vary in relation to the substrate surface. The method may include tuning the peak intensity location within the cavity by shifting the wavelength of the input wave or altering the characteristics of the photonic crystal by an external field. A second photonic crystal may be used on the other side of the substrate to replace the reflecting properties of the substrate, allowing for further smoothing of the wavefront.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: November 13, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Paul R. De La Houssaye, J. Scott Rodgers
  • Patent number: 8217382
    Abstract: An optical-powered device includes a flexible substrate, a photonic bandgap layer coupled thereto, a waveguide contained within the photonic bandgap layer, and a dendrimer region contained within the waveguide. The dendrimer region may comprise more than one dendrimers. The dendrimer region emission band is within the photonic bandgap of the photonic bandgap layer. Multiple photonic bandgap layers may be included, with one or more waveguides therein. Each waveguide may have a dendrimer region therein. Electronic circuitry may be contained within a portion of the photonic bandgap layer. A light-modulating layer may be directly coupled to the photonic bandgap layer. A portion of the photonic bandgap layer may have a sensing material embedded therein. A cover layer having one or more windows may be coupled to the photonic bandgap layer. Another layer, such as a buffer layer, may be disposed between the substrate layer and the photonic bandgap layer.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 10, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joanna N. Ptasinski, Stephen D. Russell, J. Scott Rodgers
  • Patent number: 7734129
    Abstract: A photonic processor having a high spectral resolution which separates an input optic signal into numerous channels and a method of constructing same are provided. The photonic processor includes an optical delay line spiral having dips to compensate for path length differences between the various paths such that each path is an integer multiple of a fixed path length. Straight segments are included in the spiral design to offset the dips in the spiral such that they do not overlap. A number of waveguide taps are included that may launch the channelized light signals into a photonic lens.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: June 8, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: J. Scott Rodgers, Randall B. Olsen
  • Patent number: 7457501
    Abstract: A technique for coupling electromagnetic energy into an aperture smaller than the wavelength of the electromagnetic energy desired to be coupled is disclosed.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: November 25, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joanna N. Ptasinski, J. Scott Rodgers, Stephen D. Russell
  • Patent number: 7305168
    Abstract: A Electronic/Photonic Bandgap Device (NC#98614). The apparatus includes a substrate; an electronics layer operatively coupled to the substrate; and an optical bus layer operatively coupled to the electronics layer. The optical bus layer comprises at least one 3D photonic bandgap structure having at least one period operatively coupled to the electronics layer and comprising a plurality of honeycomb-like structures having a plurality of high index regions and a plurality of low index regions, wherein the plurality of honeycomb-like structures comprises at least four honeycomb-like structures layered over each other, wherein a second honeycomb-like structure is offset from a first honeycomb-like structure, wherein a third honeycomb-like structure is offset from a second honeycomb-like structure, and wherein a fourth honeycomb-like structure is not offset from the first honeycomb-like structure. The 3D photonic bandgap structure and the electronics layer are monolithically integrated over the substrate.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: December 4, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: J. Scott Rodgers, Joanna N. Ptasinski, Stephen D. Russell, Michael G. Lovern, Randy L. Shimabukuro