Patents by Inventor J. Strange

J. Strange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250177759
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Application
    Filed: December 19, 2024
    Publication date: June 5, 2025
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Patent number: 12179030
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: December 31, 2024
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Publication number: 20240390683
    Abstract: A leadless biostimulator includes a housing, and distal and proximal electrodes disposed on or integrated into the housing. The distal electrode includes an electrode body and an electrode tip mounted on a distal end of the electrode body, wherein the electrode tip is electrically conductive and configured to be placed in contact with a stimulation site. The electrode tip includes a distal tip end facing a surrounding environment and opposite a proximal tip end. The electrode tip defines a tip hole extending through the electrode tip along a longitudinal axis of the housing from the distal tip end to the proximal tip end. The tip hole comprises a through hole having a first diameter at the distal tip end and a second diameter at the proximal tip end of the tip electrode, wherein the first diameter of the tip hole is less than the second diameter of the tip hole.
    Type: Application
    Filed: August 5, 2024
    Publication date: November 28, 2024
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Publication number: 20240382772
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Application
    Filed: May 20, 2024
    Publication date: November 21, 2024
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Publication number: 20240359019
    Abstract: A biostimulator, such as a leadless pacemaker, having electrode(s) coated with low-polarization coating(s), is described. A low-polarization coating including titanium nitride can be disposed on an anode, and a low-polarization coating including a first layer of titanium nitride and a second layer of platinum black can be disposed on a cathode. The anode can be an attachment feature used to transmit torque to the biostimulator. The cathode can be a fixation element used to affix the biostimulator to a target tissue. The low-polarization coating(s) impart low-polarization to the electrode(s) to enable an atrial evoked response to be detected and used to effect automatic output regulation of the biostimulator. Other embodiments are also described and claimed.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Inventors: Gene A. BORNZIN, Wesley ALLEMAN, Tyler J. STRANG, Keith VICTORINE, Nicole COOPER
  • Patent number: 12102830
    Abstract: A leadless biostimulator has a housing including an electronics compartment, an electronics assembly mounted in the electronics compartment, a proximal electrode that disposed on and/or integrated into the housing, and an electrical feedthrough assembly. The electrical feedthrough assembly includes a distal electrode and a flange. The flange is mounted on the housing. The distal electrode is electrically isolated from the flange by an insulator and configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A mount is mounted on the flange and thereby mounted on the electrical feedthrough assembly. A fixation element is mounted on the mount and configured to facilitate fixation of the leadless biostimulator to tissue of a patient.
    Type: Grant
    Filed: May 17, 2023
    Date of Patent: October 1, 2024
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 12042658
    Abstract: A biostimulator, such as a leadless pacemaker, having electrode(s) coated with low-polarization coating(s), is described. A low-polarization coating including titanium nitride can be disposed on an anode, and a low-polarization coating including a first layer of titanium nitride and a second layer of platinum black can be disposed on a cathode. The anode can be an attachment feature used to transmit torque to the biostimulator. The cathode can be a fixation element used to affix the biostimulator to a target tissue. The low-polarization coating(s) impart low-polarization to the electrode(s) to enable an atrial evoked response to be detected and used to effect automatic output regulation of the biostimulator. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: July 23, 2024
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Wesley Alleman, Tyler J. Strang, Keith Victorine, Nicole Cooper
  • Patent number: 12005262
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: June 11, 2024
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun
  • Patent number: 12000105
    Abstract: A system and method for a marine wrapper including a substrate, the substrate having an inner surface and an outer surface; and a coating fixedly adhered to the outer surface of the substrate, the coating including a bio-enhancing material to encourage marine growth on the outer surface of the substrate.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: June 4, 2024
    Inventors: Timothy A. Gallagher, Anthony E. J. Strange
  • Publication number: 20230310868
    Abstract: A biostimulator and a biostimulator system for septal pacing, is described. The biostimulator includes an articulation to allow an electrode axis of a pacing electrode to be directed differently than a housing axis of a housing. The housing contains electrical circuitry that is electrically connected to the pacing electrode. The differently directed axes allow the pacing electrode to affix to target tissue of an interventricular septal wall of a heart when the housing of the biostimulator is located near an apex of the heart. The articulation can include a flexible portion of an extension, a hinge, or a tether. Other embodiments are also described and claimed.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Inventors: Xiangqun Shawn Chen, Tyler J. Strang, Bernhard Arnar, Kyle J. Nix, Nicole Cooper, Keith Victorine, Steve Chantasirivisal
  • Publication number: 20230285757
    Abstract: A leadless biostimulator has a housing including an electronics compartment, an electronics assembly mounted in the electronics compartment, a proximal electrode that disposed on and/or integrated into the housing, and an electrical feedthrough assembly. The electrical feedthrough assembly includes a distal electrode and a flange. The flange is mounted on the housing. The distal electrode is electrically isolated from the flange by an insulator and configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A mount is mounted on the flange and thereby mounted on the electrical feedthrough assembly. A fixation element is mounted on the mount and configured to facilitate fixation of the leadless biostimulator to tissue of a patient.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11745202
    Abstract: A dry non-plasma treatment system for removing material is described. The treatment system is configured to provide chemical treatment of one or more substrates, wherein each substrate is exposed to a gaseous chemistry under controlled conditions including surface temperature and gas pressure. Furthermore, the treatment system is configured to provide thermal treatment of each substrate, wherein each substrate is thermally treated to remove the chemically treated surfaces on each substrate.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: September 5, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Martin Kent, Eric J. Strang
  • Patent number: 11691017
    Abstract: An electrical feedthrough assembly, which is configured to be mounted on a housing of a leadless biostimulator, comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within the housing of the leadless biostimulator.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: July 4, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11666765
    Abstract: A biostimulator, such as a leadless pacemaker, has electrode(s) coated with low-polarization coating(s). A low-polarization coating including titanium nitride can be disposed on an anode, and a low-polarization coating including a first layer of titanium nitride and a second layer of platinum black can be disposed on a cathode. The anode can be an attachment feature used to transmit torque to the biostimulator. The cathode can be a fixation element used to affix the biostimulator to a target tissue. The low-polarization coating(s) impart low-polarization to the electrode(s) to enable an atrial evoked response to be detected and used to effect automatic output regulation of the biostimulator. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: June 6, 2023
    Assignee: PACESETTER, INC.
    Inventors: Gene A. Bornzin, Wesley Alleman, Tyler J. Strang, Keith Victorine, Nicole Cooper
  • Publication number: 20230090496
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Patent number: 11541243
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including coaxial fixation elements to engage or electrically stimulate tissue, is described. The coaxial fixation elements include an outer fixation element extending along a longitudinal axis and an inner fixation element radially inward from the outer fixation element. One or more of the fixation elements are helical fixation elements that can be screwed into tissue. The outer fixation element has a distal tip that is distal to a distal tip of the inner fixation element, and an axial stiffness of the outer fixation element is lower than an axial stiffness of the inner fixation element. The relative stiffnesses are based on one or more of material or geometric characteristics of the respective fixation elements. Other embodiments are also described and claimed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 3, 2023
    Assignee: PACESETTER, INC.
    Inventors: Thomas B. Eby, Tyler J. Strang, Keith Victorine, Wesley Alleman
  • Publication number: 20220249842
    Abstract: A leadless biostimulator, and an electrical feedthrough assembly for use therewith, are described herein. The leadless biostimulator comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within a housing of the leadless biostimulator, and wherein the electrical feedthrough assembly is configured to be mounted on the housing of the leadless biostimulator.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 11, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11331496
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including an electrical feedthrough assembly mounted on a housing, is described. An electronics compartment of the housing can contain an electronics assembly to generate a pacing impulse, and the electrical feedthrough assembly can include an electrode tip to deliver the pacing impulse to a target tissue. A monolithically formed electrode body can have a pin integrated with a cup. The pin can be electrically connected to the electronics assembly, and the cup can be electrically connected to the electrode tip. Accordingly, the biostimulator can transmit the pacing impulse through the monolithic pin and cup to the target tissue. The cup can hold a filler having a therapeutic agent for delivery to the target tissue and may include retention elements for maintaining the filler at a predetermined location within the cup.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 17, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11259908
    Abstract: A veterinary subject intranasal administration device includes a first support member portion including a septum interface portion sized for insertion into a nasal passage of the veterinary subject; an actuation mechanism connected to the first support member portion; and a fluid conduit having a distal end opposite a supported end, the distal end sized for insertion into the nasal passage of the veterinary subject, the fluid conduit being flexible and configured to receive fluid from a fluid source and discharge the fluid through the distal end into the nasal passage, the distal end of the fluid conduit being unsupported and movable relative to the septum interface portion.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: March 1, 2022
    Inventors: Amy L. Marr, Jane Granville Owens, Jeffrey Kyle Hill, Casey J. Strange, Randall Lee Waln, Christopher C. Miller, Gilly Regev-Shoshani, Alex Stenzler, Steve Han
  • Publication number: 20220023646
    Abstract: A leadless biostimulator including an attachment feature to facilitate precise manipulation during delivery or retrieval is described. The attachment feature can be monolithically formed from a rigid material, and includes a base, a button, and a stem interconnecting the base to the button. The stem is a single post having a transverse profile extending around a central axis. The transverse profile can be annular and can surround the central axis. The leadless biostimulator includes a battery assembly having a cell can that includes an end boss. A tether recess in the end boss is axially aligned with a face port in the button to receive tethers of a delivery or retrieval system through an inner lumen of the stem. The attachment feature can be mounted on and welded to the cell can at a thickened transition region around the end boss. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Inventors: Thomas B. Eby, Benjamin F. James, IV, Kavous Sahabi, Travis Lieber, Arees Garabed, Craig E. Mar, Sondra Orts, Tyler J. Strang, Jennifer Heisel, Bernhard Arnar, Daniel Coyle, Daniel Goodman, Scott Smith, Scott Kerns, David Rickheim, Adam Weber, Mike Sacha, Byron Liehwah Chun