Patents by Inventor J. T. Lin

J. T. Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240016828
    Abstract: In one aspect, the present disclosure provides GlcNAc-Asn analogs of the formula: wherein the variables are as defined herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of using the compounds disclosed herein. Additionally, the present disclosure also provides methods of treating cancer comprising inhibiting NGLY1.
    Type: Application
    Filed: August 23, 2023
    Publication date: January 18, 2024
    Applicant: University of North Texas Health Science Center
    Inventors: Yu-Chieh WANG, Victor J.T. LIN, Ashwini Ashwini ZOLEKAR, Kyle A. EMMITTE, Nigam M. MISHRA, Jin LIU
  • Patent number: 11779592
    Abstract: In one aspect, the present disclosure provides GlcNAc-Asn analogs of the formula (I): wherein the variables are as defined herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of using the compounds disclosed herein. Additionally, the present disclosure also provides methods of treating cancer comprising inhibiting NGLY1.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 10, 2023
    Assignee: UNIVERSITY OF NORTH TEXAS HEALTH SCIENCE CENTER
    Inventors: Yu-Chieh Wang, Victor J. T. Lin, Ashwini Zolekar, Kyle A. Emmitte, Nigam M. Mishra, Jin Liu
  • Publication number: 20210205349
    Abstract: In one aspect, the present disclosure provides GlcNAc-Asn analogs of the formula (I): wherein the variables are as defined herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of using the compounds disclosed herein. Additionally, the present disclosure also provides methods of treating cancer comprising inhibiting NGLY1.
    Type: Application
    Filed: August 14, 2018
    Publication date: July 8, 2021
    Applicant: University of North Texas Health Science Center
    Inventors: Yu-Chieh Wang, Victor J.T. Lin, Ashwini Zolekar, Kyle A. Emmitte, Nigam M. Mishra, Jin Liu
  • Publication number: 20150164692
    Abstract: A method and system for treating presbyopia by an endoscope-assisted laser system consists of a camera connected to a signal-fiber, an illumination-fiber and a laser device connected to a laser-fiber. The endoscope gauge probe is inserted into the eye for real time monitoring of the photocoagulation process of the ciliary-body (or process) of the eye in a predetermined area inside the eye. The preferred laser device produces a laser beam having a wavelength 0.7 to 1.3 micron, laser fluency about 0.5 to 5.0 W/cm?2, and operated at a continuous mode, preheating mode or a pulsed-mode having a repetition rate of (0.5-5,000) Hz. The presbyopia treatment can be combined with glaucoma or cataract procedure to achieve multi-function in single system.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 18, 2015
    Inventor: J.T. Lin
  • Publication number: 20080051886
    Abstract: Method and design of a dual-optics accommodating intraocular lens (IOL) for vision correction of adult and pediatric eyes after cataract surgeries are disclosed. For adult eyes, a positive accommodation amplitude greater than 3.5 diopter and preferably 4.0 to 10.0 diopter may be achieved by optimal configurations having the positive-power front-optics moves toward the cornea, whereas the negative power back-optics moves in the opposite direction. In contrast, a negative accommodation is required for pediatric eyes and may be achieved by a reversed configurations. The enhanced efficiency, up to 500%, is proposed by preferred embodiments based on new lens design formulas and calculation steps for the IOL power pre-determined by the measured ocular parameters including the corneal power, IOL position and the vitreous cavity length of the eye.
    Type: Application
    Filed: August 24, 2006
    Publication date: February 28, 2008
    Inventor: J.T. Lin
  • Publication number: 20070100401
    Abstract: A device for hair removal includes the use of infrared laser having wavelength of about 0.7 to 1.1 microns, energy per pulse of about 0.5 to 5.0 J on the skin surface and operated at about 1.0 to 5.0 Hz. The treated area includes one or more than one of the following: the hair shaft, root, hair follicle, papilla, blood vessels feeding the papilla, or blood vessels in the papilla. The delivery means includes an optical fiber or fiber bundle which delivers said laser beam to said treated skin, where the optical fibers is further connected to a hand piece containing the laser unit and optics. The laser beam is generated from a laser unit consisting of about 1 to 5 diode arrays having the same wavelength at about 0.7 to 1.1 microns, or a combination of 2 to 3 different wavelengths selected from the ranges of about 700 to 760 nm, 780 to 820 nm, 900 to 930 nm, or 970 to 990 nm.
    Type: Application
    Filed: November 1, 2005
    Publication date: May 3, 2007
    Inventor: J.T. Lin
  • Publication number: 20060276861
    Abstract: Laser for thermal shrinkage of soft tissue of uvula, soft palate, nasal turbinate or tongue base for the treatment of snoring, nasal obstruction or sleep apnea are disclosed. The preferred laser includes infrared laser about 0.7 to 1.85 micron, pulse duration about 100 microsecond to 5 seconds, spot size of about 2 to 5 mm and power of about 2 to 20 W at the treated area. The laser energy is delivered to the treated area by an optical fiber and a hand piece to cause a localized temperature about 65 to 85 degree Celsius for sufficient shrinkage of the treated soft tissues. Optical fiber bundles to produce high-power diode laser output or multi-wavelength are also disclosed.
    Type: Application
    Filed: June 1, 2005
    Publication date: December 7, 2006
    Inventor: J. T. Lin
  • Publication number: 20060129141
    Abstract: Surgical method and apparatus for presbyopia correction and glaucoma by laser removal a portion of the sclera and/or ciliary tissue are disclosed. The disclosed preferred embodiments of the system consists of a beam spot controller, an articulated arm and an attached end-piece. The basic laser beam includes UV laser having wavelength ranges of (0.19-0.36) microns, generated from UV excimer lasers of ArF, XeCl or solid state lasers of Nd:YLF, Nd:YAG, Ti:sapphire with harmonic generation using nonlinear crystals. Presbyopia is treated by ablation of the treated surface tissue in predetermined patterns outside the limbus to increase the accommodation of the eye. Glaucoma is treated by decreasing of intra ocular pressure of the laser surgery.
    Type: Application
    Filed: December 10, 2004
    Publication date: June 15, 2006
    Inventor: J. T. Lin
  • Publication number: 20050279369
    Abstract: Laser and non-laser means to remove a portion of the ciliary body tissue for the treatment of presbyopia and glaucoma are disclosed. Mechanisms based on elasticity increase the sclera-ciliary-body and zonule “complex” is proposed. Total accommodation based a lens relaxation and lanes anterior shift is calculated. The preferred embodiments for the ablation patterns include radial lines, curved lines, ring dots or any non-specific shapes in a symmetric geometry. The surgery apparatus includes lasers in UV (0.19 to 0.35 micron) and IR (2.8 to 3.2) micron, and non-laser device of radio frequency wave, electrode device, bipolar device and plasma-assisted device. Post-operation medication such as pilocarpine (0.5%-5%) or medicines with similar to reduce postoperative regression or enhance the accommodation is presented. A much deeper, about (0.8-1.4) mm, ablation depth supraciliary body is proposed for (50%/-200%) greater accommodation than the prior arts based on superficial scleral ablation or expansion.
    Type: Application
    Filed: June 21, 2004
    Publication date: December 22, 2005
    Inventor: J. T. Lin
  • Patent number: 6824540
    Abstract: Systems and surgical techniques for presbyopia correction by laser removal of the sclera tissue are disclosed. The disclosed preferred embodiments of the system consists of a beam spot controller, a fiber delivery unit and a fiber tip. The basic laser including UV lasers and infrared lasers having wavelength ranges of (0.15-0.36) microns and (1.9-3.2) microns and diode lasers of about 0.98, 1.5 and 1.9 microns. Presbyopia is treated by a system which uses an ablative laser to ablate the sclera tissue outside the limbus to increase the accommodation of the ciliary body of the eye. The sclera tissue may be ablated by the laser with or without the conjunctiva layer open.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: November 30, 2004
    Assignee: SurgiLight, Inc.
    Inventor: J. T. Lin
  • Patent number: 6745775
    Abstract: Presbyopia is treated by a method which uses various lasers to remove a portion of the scleral tissue and increase the accommodation of the presbyopic patient's eye. Stable accommodation is achieved by the filling of the sub-conjunctival tissue to the laser-ablated scleral areas. The proposed laser wavelength ranges from ultraviolet to infrared of (0.15-0.36) microns, (0.5-1.4) microns and (0.9-10.6) microns. Both scanning and fiber delivered systems are proposed.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: June 8, 2004
    Assignee: Surgilight, Inc.
    Inventor: J. T. Lin
  • Publication number: 20040078009
    Abstract: A method and apparatus for presbyopia correction via combination of a surgical and pharmacological means are disclosed. The pharmacological means is to either “trigger” or enhance the contraction effect after a surgical method for larger accommodation and/or for more stable post-surgery results. In addition, the invention discloses that lower dose range is especially useful in providing eye drugs that is low enough to be both safe and effective when used together with the surgical methods. The preferred embodiments for the surgical methods to remove a portion of the sclera tissue include lasers at wavelength of (0 19-0.36) um and (0.9-3.2) um and the non-laser device of radio frequency wave, electrode device, bipolar device and plasma assisted device. The preferred embodiment for pharmacological means includes the use of pilocarpine hydrochloride, phosphorothioate, physostigmine or other beta-adrenergic propanolamines.
    Type: Application
    Filed: October 17, 2002
    Publication date: April 22, 2004
    Inventor: J. T. Lin
  • Publication number: 20040078030
    Abstract: Presbyopia is treated by a method which uses various lasers to remove a portion of the scleral tissue and increase the accommodation of the presbyopic patient's eye By changing the laser power density, fluency or spot size, a single laser device having dual-function of ablation and coagulation is proposed for minimum bleeding. Fiber-bundle coupled to a single fiber is presented to increase the power density of the laser for efficient tissue ablation New mechanisms of lens curvature change and lens anterior shift are proposed for the total accommodation. The preferred laser wavelength ranges from ultraviolet to infrared including (0.15-0.36) microns, (0.9-1.6) microns, (1.8-2.2) microns and (2.8-3.2) microns Both scanning and fiber delivered systems are proposed.
    Type: Application
    Filed: October 16, 2002
    Publication date: April 22, 2004
    Inventor: J. T. Lin
  • Publication number: 20040034397
    Abstract: A method and apparatus for treating various skin disorders of psoriasis, vitiligo, eczema, dermatitis and acne is presented. An apparatus for the treatment of skin disorders includes a power supply, a light source, a reflecting mirror, a filter, a fiber delivery unit and a hand piece. A spectra selector using a filter or reflecting mirror is used to select a UV spectrum about (270-320) nm or a blue spectra about (405-435) nm which is delivered to the treated skin area by a light guide and a hand piece. A power supply is used to generate pulsed light of about (0.01-500) microseconds and a repetition rate of (1-500) Hz. Adjustable light spot size of 0.5×0.5 cm to 10×10 cm is proposed for efficient treatments of both small and large areas such that only the disordered areas are selectively treated whereas the exposure of the healthy areas is minimized.
    Type: Application
    Filed: August 14, 2002
    Publication date: February 19, 2004
    Inventor: J. T. Lin
  • Publication number: 20030139737
    Abstract: A surgical method and apparatus for presbyopia correction removal of the sclera tissue are disclosed. Mechanisms based on sub-conjunctiva filled-in of the sclera area and cause the sclera-ciliary-body and zonule “complex” become more flexible (or less rigidity) are proposed. Total accommodation based a lens relaxation and lanes anterior shift is calculated and proposed as the guidance of the parameters for device design and clinical outcomes The preferred embodiments for the ablation patterns include radial lines, curved lines, ring dots or any non-specific shapes in a symmetric geometry. The surgery apparatus includes non-laser device of radio frequency wave, electrode device, bipolar device and plasma assisted device. Another preferred embodiment is to use post-operation medication such as pilocarpine (1%-10%) or medicines with similar nature which may cause ciliary body contraction for more stable and enhancement after the treatment.
    Type: Application
    Filed: January 24, 2002
    Publication date: July 24, 2003
    Inventor: J.T. Lin
  • Publication number: 20030105456
    Abstract: Surgical apparatus and surgical methods are proposed for the prevention of age-related macular degeneration (AMD) and choroidal neovascularization (CNV), and other eye diseases such as glaucoma by removal of the sclera tissue to reduce its rigidity and increase the flood flow and decrease pressure in the choriocapillaris. The disclosed preferred embodiments of the system consists of a tissue ablation means and a control means of ablation patterns and a fiber delivery unit. The basic laser beam includes UV lasers and infrared lasers having wavelength ranges of (0.15-0.36) microns and (0.5-3.2) microns and diode lasers of about 0.98, 1.5 and 1.9 microns.
    Type: Application
    Filed: December 4, 2001
    Publication date: June 5, 2003
    Inventor: J.T. Lin
  • Publication number: 20030038920
    Abstract: A method and apparatus for performing vision correction by selecting means of changing the refractive index includes medical, mechanical, optical or chemical method. Detail theoretical calculation with clinical predictions are presented for quantitative index changes required to correct myopia, hyperopia and presbyopia. The key parameters of the radius and thickness of the cornea, lens and indices of the lens, cornea and humor chambers and the effect due aging are proposed.
    Type: Application
    Filed: August 21, 2001
    Publication date: February 27, 2003
    Inventor: J. T. Lin
  • Patent number: 6491688
    Abstract: A method and apparatus for presbyopia correction are disclosed. The disclosed preferred embodiments of the system consists of a beam spot controller, a beam delivery device, a slit lamp, a visible aiming beam and a selected solid state laser having a wavelength of (0.9-1.4) microns. Presbyopia is treated by the thermal contraction of the human zonnulas with a temperature increase of about (15-50) degree-C generated by the selected lasers. The near infrared laser is focused and delivered by a gonio lens to the target zonnulas area and viewed by a surgeon using a slip lamp. The selected laser having an optimal absorption characteristics is tightly focused such that only the target zonnulas is heated, while the cornea, the lens body and the adjacent areas are not damaged.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: December 10, 2002
    Inventors: J. T. Lin, Heraldo Sa Martins
  • Publication number: 20010029363
    Abstract: Presbyopia is treated by a system using various lasers to remove a portion of the scleral tissue and increase the accommodation of the presbyopic patient's eye. Stable accommodation is achieved by the filling of the sub-conjunctiva tissue to the laser-ablated scleral areas. The proposed laser wavelength ranges from ultraviolet to infrared of (0.15-0.36) microns, (0.5-1.4) microns and (0.9-3.2) microns. Both scanning and fiber delivered systems are proposed to generate the ablation patterns. Laser ablation of the sclera may be conducted with or without opening the conjunctiva layer.
    Type: Application
    Filed: March 30, 2001
    Publication date: October 11, 2001
    Inventor: J. T. Lin
  • Patent number: RE37504
    Abstract: A refractive laser surgery process is disclosed for using compact, low-cost ophthalmic laser systems which have computer-controlled scanning with a non-contact delivery device for both photo-ablation and photo-coagulation in corneal reshaping. The basic laser systems may include flash-lamp and diode pumped UV solid state lasers (193-215 nm), compact excimer laser (193 nm), free-running Er:glass (1.54 microns), Ho:YAG (2.1 microns), Q-switched Er:YAG (2.94 microns), and tunable IR lasers, (750-1100) nm and (2.5-3.2) microns. The advantages of the non-contact, scanning device used in the process over other prior art lasers include being safer, reduced cost, more compact and more precise and with greater flexibility. The theory of beam overlap and of ablation rate and coagulation patterns is also disclosed for system parameters. Lasers are selected with energy of (0.01-10) mJ, repetition rate of (1-10,000), pulse duration of 0.01 nanoseconds to a few hundreds of microseconds, and with spot size of (0.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: January 8, 2002
    Assignee: LaserSight Technologies, Inc.
    Inventor: J. T. Lin