Patents by Inventor J. Thomas Kocab

J. Thomas Kocab has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11643763
    Abstract: The present disclosure provides scalable nanotube fabrics and methods for controlling or otherwise adjusting the nanotube length distribution of a nanotube application solution in order to realize scalable nanotube fabrics. In one aspect of the present disclosure, one or more filtering operations are used to remove relatively long nanotube elements from a nanotube solution until nanotube length distribution of the nanotube solution conforms to a preselected or desired nanotube length distribution profile. In another aspect of the present disclosure, a sono-chemical cutting process is used to break up relatively long nanotube elements within a nanotube application solution into relatively short nanotube elements to realize a pre-selected or desired nanotube length distribution profile.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: May 9, 2023
    Assignee: ZEON CORPORATION
    Inventors: Rahul Sen, Billy Smith, J. Thomas Kocab, Ramesh Sivarajan, Peter Sites, Thomas Rueckes, David A. Roberts
  • Patent number: 11072714
    Abstract: The present disclosure provides a nanotube solution being treated with a molecular additive, a nanotube film having enhanced adhesion property due to the treatment of the molecular additive, and methods for forming the nanotube solution and the nanotube film. The nanotube solution includes a liquid medium, nanotubes in the liquid medium, and a molecular additive in the liquid medium, wherein the molecular additive includes molecules that provide source elements for forming a group IV oxide within the nanotube solution. The molecular additive can introduce silicon (Si) and/or germanium (Ge) in the liquid medium, such that nominal silicon and/or germanium concentrations of the nanotube solution ranges from about 5 ppm to about 60 ppm.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 27, 2021
    Assignee: Nantero, Inc.
    Inventors: David A. Roberts, Rahul Sen, Peter Sites, J. Thomas Kocab, Feng Gu
  • Patent number: 10773960
    Abstract: A method for controlling density, porosity and/or gap size within a nanotube fabric layer is disclosed. In one aspect, this can be accomplished by controlling the degree of rafting in a nanotube fabric. In one aspect, the method includes adjusting the concentration of individual nanotube elements dispersed in a nanotube application solution. A high concentration of individual nanotube elements will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a lower concentration will tend to discourage rafting. In another aspect, the method includes adjusting the concentration of ionic particles dispersed in a nanotube application solution. A low concentration of ionic particles will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a higher concentration will tend to discourage rafting. In other aspects, both concentration parameters are adjusted.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: September 15, 2020
    Assignee: Nantero, Inc.
    Inventors: Rahul Sen, J. Thomas Kocab, Feng Gu
  • Publication number: 20200262701
    Abstract: The present disclosure provides scalable nanotube fabrics and methods for controlling or otherwise adjusting the nanotube length distribution of a nanotube application solution in order to realize scalable nanotube fabrics. In one aspect of the present disclosure, one or more filtering operations are used to remove relatively long nanotube elements from a nanotube solution until nanotube length distribution of the nanotube solution conforms to a preselected or desired nanotube length distribution profile. In another aspect of the present disclosure, a sono-chemical cutting process is used to break up relatively long nanotube elements within a nanotube application solution into relatively short nanotube elements to realize a pre-selected or desired nanotube length distribution profile.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: Rahul SEN, Billy SMITH, J. Thomas KOCAB, Ramesh SIVARAJAN, Peter SITES, Thomas RUECKES, David A. ROBERTS
  • Patent number: 10654718
    Abstract: The present disclosure provides scalable nanotube fabrics and methods for controlling or otherwise adjusting the nanotube length distribution of a nanotube application solution in order to realize scalable nanotube fabrics. In one aspect of the present disclosure, one or more filtering operations are used to remove relatively long nanotube elements from a nanotube solution until nanotube length distribution of the nanotube solution conforms to a preselected or desired nanotube length distribution profile. In another aspect of the present disclosure, a sono-chemical cutting process is used to break up relatively long nanotube elements within a nanotube application solution into relatively short nanotube elements to realize a pre-selected or desired nanotube length distribution profile.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 19, 2020
    Assignee: Nantero, Inc.
    Inventors: Rahul Sen, Billy Smith, J. Thomas Kocab, Ramesh Sivarajan, Peter Sites, Thomas Rueckes, David A. Roberts
  • Patent number: 10181569
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: January 15, 2019
    Assignee: Nantero, Inc.
    Inventors: Eliodor G. Ghenciu, Thomas Rueckes, Thierry Yao, J. Thomas Kocab
  • Patent number: 10069072
    Abstract: Solutions of carbon nanotubes and methods for purifying the solutions are provided. The methods include mixing, for example, at least one complexing agents, at least one ionic species, and/or at least one buffer oxide etch (BOE) with a liquid medium containing carbon nanotubes and different types of contaminants, such as metal impurities, amorphous carbon, and/or silica particles, and performing a filtration process to the liquid medium so as to remove or reduce the contaminants in the liquid medium. As a result, carbon nanotube solutions of low contaminants are produced. In some embodiments, the solutions of this disclosure include a high concentration of carbon nanotubes and are substantially free from metal, amorphous carbon, and/or silica impurities.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 4, 2018
    Assignee: Nantero, Inc.
    Inventors: David A. Roberts, Rahul Sen, J. Thomas Kocab, Billy Smith, Feng Gu
  • Publication number: 20180013084
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Application
    Filed: September 1, 2017
    Publication date: January 11, 2018
    Inventors: Eliodor G. Ghenciu, Thomas Rueckes, Thierry Yao, J. Thomas Kocab
  • Patent number: 9755170
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 5, 2017
    Assignee: Nantero, Inc.
    Inventors: Eliodor G. Ghenciu, Thomas Rueckes, Thierry Yao, J. Thomas Kocab
  • Publication number: 20170246561
    Abstract: The present disclosure provides methods for removing defects nanotube application solutions and providing low defect, highly uniform nanotube fabrics. In one aspect, a degassing process is performed on a suspension of nanotubes to remove air bubbles present in the solution. In another aspect, a continuous flow centrifugation (CFC) process is used to remove small scale defects from the solution. In another aspect, a depth filter is used to remove large scale defects from the solution. According to the present disclosure, these three methods can be used alone or combined to realize a low defect nanotube application solutions and fabrics.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Applicant: Nantero, Inc.
    Inventors: J. THOMAS KOCAB, Thomas Bengtson, Sanjin Hosic, Rahul Sen, Billy Smith, David A. Roberts, Peter Sites
  • Publication number: 20170226352
    Abstract: The present disclosure provides a nanotube solution being treated with a molecular additive, a nanotube film having enhanced adhesion property due to the treatment of the molecular additive, and methods for forming the nanotube solution and the nanotube film. The nanotube solution includes a liquid medium, nanotubes in the liquid medium, and a molecular additive in the liquid medium, wherein the molecular additive includes molecules that provide source elements for forming a group IV oxide within the nanotube solution. The molecular additive can introduce silicon (Si) and/or germanium (Ge) in the liquid medium, such that nominal silicon and/or germanium concentrations of the nanotube solution ranges from about 5 ppm to about 60 ppm.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: David A. Roberts, Rahul Sen, Peter Sites, J. Thomas Kocab, Feng Gu
  • Publication number: 20170210626
    Abstract: A method for controlling density, porosity and/or gap size within a nanotube fabric layer is disclosed. In one aspect, this can be accomplished by controlling the degree of rafting in a nanotube fabric. In one aspect, the method includes adjusting the concentration of individual nanotube elements dispersed in a nanotube application solution. A high concentration of individual nanotube elements will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a lower concentration will tend to discourage rafting. In another aspect, the method includes adjusting the concentration of ionic particles dispersed in a nanotube application solution. A low concentration of ionic particles will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a higher concentration will tend to discourage rafting. In other aspects, both concentration parameters are adjusted.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Rahul Sen, J. Thomas Kocab, Feng Gu
  • Patent number: 9650732
    Abstract: The present disclosure provides methods for removing defects nanotube application solutions and providing low defect, highly uniform nanotube fabrics. In one aspect, a degassing process is performed on a suspension of nanotubes to remove air bubbles present in the solution. In another aspect, a continuous flow centrifugation (CFC) process is used to remove small scale defects from the solution. In another aspect, a depth filter is used to remove large scale defects from the solution. According to the present disclosure, these three methods can be used alone or combined to realize a low defect nanotube application solutions and fabrics.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: May 16, 2017
    Assignee: Nantero Inc.
    Inventors: J. Thomas Kocab, Thomas R. Bengtson, Sanjin Hosic, Rahul Sen, Billy Smith, David A. Roberts, Peter Sites
  • Patent number: 9634251
    Abstract: The present disclosure provides a nanotube solution being treated with a molecular additive, a nanotube film having enhanced adhesion property due to the treatment of the molecular additive, and methods for forming the nanotube solution and the nanotube film. The nanotube solution includes a liquid medium, nanotubes in the liquid medium, and a molecular additive in the liquid medium, wherein the molecular additive includes molecules that provide source elements for forming a group IV oxide within the nanotube solution. The molecular additive can introduce silicon (Si) and/or germanium (Ge) in the liquid medium, such that nominal silicon and/or germanium concentrations of the nanotube solution ranges from about 5 ppm to about 60 ppm.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 25, 2017
    Assignee: Nantero Inc.
    Inventors: David A. Roberts, Rahul Sen, Peter Sites, J. Thomas Kocab, Billy Smith, Feng Gu
  • Patent number: 9617151
    Abstract: A method for controlling density, porosity and/or gap size within a nanotube fabric layer is disclosed. In one aspect, this can be accomplished by controlling the degree of rafting in a nanotube fabric. In one aspect, the method includes adjusting the concentration of individual nanotube elements dispersed in a nanotube application solution. A high concentration of individual nanotube elements will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a lower concentration will tend to discourage rafting. In another aspect, the method includes adjusting the concentration of ionic particles dispersed in a nanotube application solution. A low concentration of ionic particles will tend to promote rafting in a nanotube fabric layer formed using such a nanotube application solution, whereas a higher concentration will tend to discourage rafting. In other aspects, both concentration parameters are adjusted.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: April 11, 2017
    Assignee: Nantero Inc.
    Inventors: Rahul Sen, J. Thomas Kocab, Feng Gu
  • Publication number: 20160226008
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Eliodor G. GHENCIU, Thomas RUECKES, Thierry YAO, J. Thomas KOCAB
  • Patent number: 9337423
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: May 10, 2016
    Assignee: Nantero Inc.
    Inventors: Eliodor G. Ghenciu, Thomas Rueckes, Thierry Yao, J. Thomas Kocab
  • Publication number: 20150188049
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Application
    Filed: February 27, 2015
    Publication date: July 2, 2015
    Inventors: Eliodor G. Ghenciu, Thomas Rueckes, Thierry Yao, J. Thomas Kocab
  • Publication number: 20150086771
    Abstract: The present disclosure provides scalable nanotube fabrics and methods for controlling or otherwise adjusting the nanotube length distribution of a nanotube application solution in order to realize scalable nanotube fabrics. In one aspect of the present disclosure, one or more filtering operations are used to remove relatively long nanotube elements from a nanotube solution until nanotube length distribution of the nanotube solution conforms to a preselected or desired nanotube length distribution profile. In another aspect of the present disclosure, a sono-chemical cutting process is used to break up relatively long nanotube elements within a nanotube application solution into relatively short nanotube elements to realize a pre-selected or desired nanotube length distribution profile.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: NANTERO INC.
    Inventors: Rahul SEN, Billy SMITH, J. Thomas KOCAB, Ramesh SIVARAJAN, Peter SITES, Thomas RUECKES, David A. ROBERTS
  • Patent number: 8969142
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 3, 2015
    Assignee: Nantero Inc.
    Inventors: Eliodor G. Ghenciu, Thomas Rueckes, Thierry Yao, J. Thomas Kocab