Patents by Inventor J. Tims

J. Tims has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125189
    Abstract: Systems and methods for driving and steering of a robot, or mobile vessel, for operation in a downhole pipe of an oil/gas/water well are presented. According to one aspect, the mobile vessel includes a plurality of wheels arranged outwardly from the mobile vessel so that each wheel may contact the inner wall of the casing. According to another aspect, the plurality of wheels may include respective wheel-centerlines that intersect the centerline of the casing that is at an offset from a centerline of the mobile vessel. The plurality of wheels includes at least two drive wheels and at least one passive wheel. According to a further aspect, the drive wheels are configured to rotate about their respective wheel-centerlines to steer the mobile vessel during traversal of the casing. In one case, the mobile vessel includes two drive and steering wheels and one passive wheel.
    Type: Application
    Filed: March 31, 2022
    Publication date: April 18, 2024
    Inventors: Kristopher V. SHERRILL, Jacob F. TIMS, Scott J. MORELAND
  • Patent number: 11413571
    Abstract: A co-current contacting system for removing impurities from a gas stream is described herein. The co-current contacting system includes a co-current contactor configured to co-currently flow a gas stream including impurities and a liquid stream through the co-current contactor. The co-current contactor is also configured to incorporate liquid droplets formed from the liquid stream into the gas stream, such that the impurities from the gas stream are absorbed by the liquid droplets. The co-current contacting system also includes a separator configured to remove the gas stream from the liquid droplets including the impurities, generating a purified gas stream and a rich liquid stream. The co-current contacting system is configured to recycle the rich liquid stream for reuse as a portion of the liquid stream flowing into the co-current contactor.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: August 16, 2022
    Assignee: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventor: J. Tim Cullinane
  • Patent number: 10717039
    Abstract: A co-current contactor for separating components in a fluid stream, the co-current contactor comprising a first inlet configured to receive the fluid stream proximate to a first end of the co-current contactor, a second inlet configured to receive a solvent proximate the first end of the co-current contactor, and a mass transfer section configured to receive the fluid stream and the solvent and to provide a mixed, two-phase flow, wherein the mass transfer section comprises a surface feature along an inner surface of the mass transfer section configured to reduce film flow along an inner wall of the mass transfer section, and wherein the surface feature comprises at least one of a hydrophobic surface, a superhydrophobic surface, a porous wall surface, and a nonlinear surface irregularity extending radially inward or radially outward along the inner surface of the mass transfer section.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: July 21, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: P. Scott Northrop, Stephanie A. Freeman, J. Tim Cullinane, Edward J. Grave, Norman K. Yeh
  • Publication number: 20200061523
    Abstract: A co-current contacting system for removing impurities from a gas stream is described herein. The co-current contacting system includes a co-current contactor configured to co-currently flow a gas stream including impurities and a liquid stream through the co-current contactor. The co-current contactor is also configured to incorporate liquid droplets formed from the liquid stream into the gas stream, such that the impurities from the gas stream are absorbed by the liquid droplets. The co-current contacting system also includes a separator configured to remove the gas stream from the liquid droplets including the impurities, generating a purified gas stream and a rich liquid stream. The co-current contacting system is configured to recycle the rich liquid stream for reuse as a portion of the liquid stream flowing into the co-current contactor.
    Type: Application
    Filed: July 30, 2019
    Publication date: February 27, 2020
    Inventor: J. Tim CULLINANE
  • Patent number: 10486100
    Abstract: The disclosure includes a method, comprising passing a fluid into a co-current contactor, passing a solvent into the co-current contactor, dividing the solvent into solvent droplets having a first average droplet size, placing the fluid in contact with the solvent droplets to create a combined stream, coalescing at least a portion of the solvent droplets to create solvent droplets having a second average droplet size, wherein the second average droplet size is greater than the first average droplet size, and separating the fluid and the solvent.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: November 26, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Stephanie A. Freeman, Edward J. Grave, J. Tim Cullinane, P. Scott Northrop, Norman K. Yeh
  • Publication number: 20190336908
    Abstract: The disclosure includes a method, comprising passing a fluid into a co-current contactor, passing a solvent into the co-current contactor, dividing the solvent into solvent droplets having a first average droplet size, placing the fluid in contact with the solvent droplets to create a combined stream, coalescing at least a portion of the solvent droplets to create solvent droplets having a second average droplet size, wherein the second average droplet size is greater than the first average droplet size, and separating the fluid and the solvent.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Stephanie A. Freeman, Edward J. Grave, J. Tim Cullinane, P. Scott Northrop, Norman K. Yeh
  • Patent number: 10391442
    Abstract: The disclosure includes a method, comprising passing a fluid into a co-current contactor, passing a solvent into the co-current contactor, dividing the solvent into solvent droplets having a first average droplet size, placing the fluid in contact with the solvent droplets to create a combined stream, coalescing at least a portion of the solvent droplets to create solvent droplets having a second average droplet size, wherein the second average droplet size is greater than the first average droplet size, and separating the fluid and the solvent.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 27, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Stephanie A. Freeman, Edward J. Grave, J. Tim Cullinane, P. Scott Northdrop, Norman K. Yeh
  • Patent number: 10343107
    Abstract: Systems and methods for separating CO2 and H2S from a natural gas stream are provided herein. The system includes a first loop of co-current contacting systems configured to remove H2S and CO2 from a natural gas stream and a second loop of co-current contacting systems configured to remove the H2S from the CO2.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: July 9, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul Scott Northrop, Charles J. Mart, J. Tim Cullinane
  • Patent number: 10155193
    Abstract: A vertically oriented co-current contacting system and methods for separating impurities from a gas stream including a vertically oriented co-current contactor (VOCC) located in-line within a pipe, a vertically oriented mixer (VOM) including an annular support ring configured to maintain the VOM within the pipe, a number of radial blades configured to allow a liquid stream to flow into the VOM, and a central gas entry cone configured to allow a gas stream to flow through a hollow section within the VOM, a vertically oriented mass transfer section downstream of the VOM. The VOM and the vertically oriented mass transfer section provide for efficient incorporation of liquid droplets including impurities from the gas stream formed from the liquid stream into the gas stream. The vertically oriented co-current contacting system also includes a separation system configured to remove the liquid droplets.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: December 18, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: J. Tim Cullinane, Edward J. Grave, Stephanie A. Freeman
  • Patent number: 10099972
    Abstract: Systems and a method are provided for producing an aromatic hydrocarbon and generating electricity from a tail gas stream. The method includes feeding a first stream including a raw natural gas into a reactor. The method includes converting the first stream, at least in part, to a second stream including an aromatic hydrocarbon within the reactor. The method includes separating the second stream into a tail gas stream and a liquid aromatic hydrocarbon stream and combusting at least a portion of the tail gas stream to generate electricity.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 16, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Paul F. Keusenkothen, Timothy A. Barckholtz, J. Tim Cullinane, Robert D. Denton, Frank Hershkowitz, Ian J. Laurenzi
  • Publication number: 20180071674
    Abstract: Systems and methods for separating CO2 and H2S from a gaseous stream are provided herein. The system includes a selective solvent that is utilized with a compact contacting technology unit to remove H2S from a gaseous stream.
    Type: Application
    Filed: July 18, 2017
    Publication date: March 15, 2018
    Inventors: Stephanie A. Freeman, Edward J. Grave, J. Tim Cullinane, P. Scott Northrop, Norman K. Yeh
  • Patent number: 9829247
    Abstract: The present disclosure provides a method for separating a feed stream in a distillation tower. The method may include forming solids in a controlled freeze zone section of the distillation tower; emitting radiation from a first radiation source in the controlled freeze zone section while the controlled freeze zone section forms no solids; detecting radiation emitted by the first radiation source as a first radiation level; detecting radiation emitted by the first radiation source as a second radiation level after detecting the first radiation level; and determining whether the solids adhered to at least one of on and around a first mechanical component included in the controlled freeze zone section based on the first radiation level and the second radiation level.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: November 28, 2017
    Assignee: ExxonMobil Upstream Reseach Company
    Inventors: Jaime A. Valencia, J. Tim Cullinane, Edward J. Grave, Robert D. Denton
  • Publication number: 20170157553
    Abstract: Systems and methods for separating CO2 and H2S from a natural gas stream are provided herein. The system includes a first loop of co-current contacting systems configured to remove H2S and CO2 from a natural gas stream and a second loop of co-current contacting systems configured to remove the H2S from the CO2.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventors: Paul Scott Northrop, Charles J. Mart, J. Tim Cullinane
  • Publication number: 20170145803
    Abstract: Systems and methods for dehydrating a natural gas stream are provided herein. The system includes a lean solvent feed system, including a line from a topsides facility, wherein the line is configured to divide a lean solvent stream to feed lean solvent to each of a number of co-current contacting systems in parallel. The co-current contacting systems are placed in series along a wet natural gas stream, wherein each of the co-current contacting systems is configured to contact the lean solvent stream with the wet natural gas stream to adsorb at least a portion of the water from the wet natural gas stream to form a dry natural gas stream. A rich solvent return system includes a line to combine rich solvent from each of the plurality of co-current contacting systems and return a rich solvent stream to the topsides facility.
    Type: Application
    Filed: September 12, 2016
    Publication date: May 25, 2017
    Inventors: Norman K. Yeh, J. Tim Cullinane, Tracy A. Fowler, Shwetha Ramkumar, Donald P. Shatto
  • Publication number: 20160263516
    Abstract: The disclosure includes a method, comprising passing a fluid into a co-current contactor, passing a solvent into the co-current contactor, dividing the solvent into solvent droplets having a first average droplet size, placing the fluid in contact with the solvent droplets to create a combined stream, coalescing at least a portion of the solvent droplets to create solvent droplets having a second average droplet size, wherein the second average droplet size is greater than the first average droplet size, and separating the fluid and the solvent.
    Type: Application
    Filed: January 29, 2016
    Publication date: September 15, 2016
    Inventors: Stephanie A. Freeman, Edward J. Grave, J. Tim Cullinane, P. Scott Northrop, Norman K. Yeh
  • Publication number: 20160236140
    Abstract: A co-current contactor for separating components in a fluid stream, the co-current contactor comprising a first inlet configured to receive the fluid stream proximate to a first end of the co-current contactor, a second inlet configured to receive a solvent proximate the first end of the co-current contactor, and a mass transfer section configured to receive the fluid stream and the solvent and to provide a mixed, two-phase flow, wherein the mass transfer section comprises a surface feature along an inner surface of the mass transfer section configured to reduce film flow along an inner wall of the mass transfer section, and wherein the surface feature comprises at least one of a hydrophobic surface, a superhydrophobic surface, a porous wall surface, and a nonlinear surface irregularity extending radially inward or radially outward along the inner surface of the mass transfer section.
    Type: Application
    Filed: January 22, 2016
    Publication date: August 18, 2016
    Inventors: P. Scott Northrop, Stephanie A. Freeman, J. Tim Cullinane, Edward J. Grave, Norman K. Yeh
  • Publication number: 20150159944
    Abstract: The present disclosure provides a method for separating a feed stream in a distillation tower. The method may include forming solids in a controlled freeze zone section of the distillation tower; emitting radiation from a first radiation source in the controlled freeze zone section while the controlled freeze zone section forms no solids; detecting radiation emitted by the first radiation source as a first radiation level; detecting radiation emitted by the first radiation source as a second radiation level after detecting the first radiation level; and determining whether the solids adhered to at least one of on and around a first mechanical component included in the controlled freeze zone section based on the first radiation level and the second radiation level.
    Type: Application
    Filed: October 17, 2014
    Publication date: June 11, 2015
    Inventors: Jaime A. Valencia, J. Tim Cullinane, Edward J. Grave, Robert D. Denton
  • Publication number: 20150158789
    Abstract: Systems and a method are provided for producing an aromatic hydrocarbon and generating electricity from a tail gas stream. The method includes feeding a first stream including a raw natural gas into a reactor. The method includes converting the first stream, at least in part, to a second stream including an aromatic hydrocarbon within the reactor. The method includes separating the second stream into a tail gas stream and a liquid aromatic hydrocarbon stream and combusting at least a portion of the tail gas stream to generate electricity.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 11, 2015
    Inventors: Paul F. Keusenkothen, Timothy A. Barckholtz, J. Tim Cullinane, Robert D. Denton, Frank Hershkowitz, Ian J. Laurenzi
  • Publication number: 20140331862
    Abstract: A vertically oriented co-current contacting system and methods for separating impurities from a gas stream including a vertically oriented co-current contactor (VOCC) located in-line within a pipe, a vertically oriented mixer (VOM) including an annular support ring configured to maintain the VOM within the pipe, a number of radial blades configured to allow a liquid stream to flow into the VOM, and a central gas entry cone configured to allow a gas stream to flow through a hollow section within the VOM, a vertically oriented mass transfer section downstream of the VOM. The VOM and the vertically oriented mass transfer section provide for efficient incorporation of liquid droplets including impurities from the gas stream formed from the liquid stream into the gas stream. The vertically oriented co-current contacting system also includes a separation system configured to remove the liquid droplets.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 13, 2014
    Inventors: J. Tim Cullinane, Edward J. Grave, Stephanie A. Freeman
  • Publication number: 20140335002
    Abstract: Systems and methods for separating CO2 and H2S from a natural gas stream are provided herein. The system includes a first loop of co-current contacting systems configured to remove H2S and CO2 from a natural gas stream and a second loop of co-current contacting systems configured to remove the H2S from the CO2.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 13, 2014
    Inventors: Paul Scott Northrop, Charles J. Mart, J. Tim Cullinane