Patents by Inventor J. Underwood

J. Underwood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11852043
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store and extract electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: December 26, 2023
    Assignee: MALTA INC.
    Inventors: Benjamin R. Bollinger, Mert Geveci, Bao H. Truong, Erhan Karaca, Sebastian W. Freund, David M. Brantzeg, James J. Underwood, John S. Bowen, Roy T. Collins
  • Publication number: 20230406946
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 21, 2023
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Takemasa TSUJI, Olivier LÉGER, Dennis J. UNDERWOOD, Marc VAN DIJK
  • Publication number: 20230399413
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 14, 2023
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Takemasa TSUJI, Olivier LÉGER, Dennis J. UNDERWOOD, Marc VAN DIJK
  • Publication number: 20230347421
    Abstract: Laser guides and methods of using the laser guides in conjunction with drilling equipment to accurately produce holes in workpieces. Such a laser guide includes a body, a laser source configured to generate a laser beam, a first end of the body configured to be releasably coupled to the spindle of the drilling machine, and a second end of the body configured to emit the laser beam such that the laser beam is axially aligned with an axis of rotation of the spindle of the drilling machine when the first end is coupled to the spindle.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Inventor: Michael J. Underwood
  • Publication number: 20230330225
    Abstract: The instant disclosure provides antibodies that specifically bind to CTLA-4 (e.g., human CTLA-4) and antagonize CTLA-4 function. Also provided are pharmaceutical compositions comprising these antibodies, nucleic acids encoding these antibodies, expression vectors and host cells for making these antibodies, and methods of treating a subject using these antibodies.
    Type: Application
    Filed: March 21, 2023
    Publication date: October 19, 2023
    Inventors: Marc VAN DIJK, Cornelia Anne MUNDT, Gerd RITTER, David SCHAER, Jedd David WOLCHOK, Taha MERGHOUB, Nicholas S. WILSON, David Adam SAVITSKY, Mark Arthur FINDEIS, Dennis J. UNDERWOOD, Jean-Marie CUILLEROT, Igor Proscurshim, Olga SHEBANOVO
  • Publication number: 20230039577
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: June 22, 2022
    Publication date: February 9, 2023
    Inventors: Ana M. GONZALEZ, Nicholas S. Wilson, Dennis J. Underwood, Volker Seibert, Olivier Léger, Marc Van Dijk, Roberta Zappasodi, Taha Merghoub, Jedd David Wolchok, David Schaer, Gerd Ritter, Takemasa Tsuji
  • Publication number: 20220389107
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and/or human GITR receptor (GITR), including multispecific antibodies that bind, e.g., to OX40 and GITR, and compositions comprising such antibodies. The antibodies disclosed herein modulate OX40 and/or GITR activity e.g., enhance, activate, induce, reduce, deactivate, or inhibit OX40 and/or GITR activity. The present disclosure also provides methods for treating disorders, such as cancer, autoimmune diseases or disorders, or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and/or human GITR and modulates OX40 and/or GITR activity.
    Type: Application
    Filed: May 9, 2022
    Publication date: December 8, 2022
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Dennis J. UNDERWOOD, Ekaterina V. BREOUS-NYSTROM, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Marc VAN DIJK
  • Publication number: 20220389839
    Abstract: The present disclosure provides pumped thermal energy storage systems that can be used to store and extract electrical energy. A pumped thermal energy storage system of the present disclosure can store energy by operating as a heat pump or refrigerator, whereby net work input can be used to transfer heat from the cold side to the hot side. A working fluid of the system is capable of efficient heat exchange with heat storage fluids on a hot side of the system and on a cold side of the system. The system can extract energy by operating as a heat engine transferring heat from the hot side to the cold side, which can result in net work output.
    Type: Application
    Filed: November 16, 2020
    Publication date: December 8, 2022
    Inventors: Benjamin R. Bollinger, Mert GEVECI, Bao H. TRUONG, Erhan KARACA, Sebastian W. FREUND, David M. BRANTZEG, James J. UNDERWOOD, John S. BOWEN, Roy T. COLLINS
  • Publication number: 20220380479
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and/or human GITR receptor (GITR), including multispecific antibodies that bind, e.g., to OX40 and GITR, and compositions comprising such antibodies. The antibodies disclosed herein modulate OX40 and/or GITR activity e.g., enhance, activate, induce, reduce, deactivate, or inhibit OX40 and/or GITR activity. The present disclosure also provides methods for treating disorders, such as cancer, autoimmune diseases or disorders, or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and/or human GITR and modulates OX40 and/or GITR activity.
    Type: Application
    Filed: May 9, 2022
    Publication date: December 1, 2022
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Dennis J. UNDERWOOD, Ekaterina V. BREOUS-NYSTROM, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Marc VAN DIJK
  • Patent number: 11447557
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 20, 2022
    Assignees: Agenus Inc., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Nicholas S. Wilson, Jeremy D. Waight, Gerd Ritter, David Schaer, Daniel Hirschhorn-Cymerman, Taha Merghoub, Ekaterina V. Breous-Nystrom, Volker Seibert, Takemasa Tsuji, Olivier Léger, Dennis J. Underwood, Marc Van Dijk
  • Patent number: 11401335
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: August 2, 2022
    Assignees: AGENUS INC., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Ana M. Gonzalez, Nicholas S. Wilson, Dennis J. Underwood, Volker Seibert, Olivier Léger, Marc Van Dijk, Roberta Zappasodi, Taha Merghoub, Jedd David Wolchok, David Schaer, Gerd Ritter, Takemasa Tsuji
  • Patent number: 11359028
    Abstract: The present disclosure provides antibodies that specifically bind to human OX40 receptor (OX40) and/or human GITR receptor (GITR), including multispecific antibodies that bind, e.g., to OX40 and GITR, and compositions comprising such antibodies. The antibodies disclosed herein modulate OX40 and/or GITR activity e.g., enhance, activate, induce, reduce, deactivate, or inhibit OX40 and/or GITR activity. The present disclosure also provides methods for treating disorders, such as cancer, autoimmune diseases or disorders, or inflammatory diseases or disorders, by administering an antibody that specifically binds to human OX40 and/or human GITR and modulates OX40 and/or GITR activity.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: June 14, 2022
    Assignees: AGENUS INC., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Nicholas S. Wilson, Jeremy D. Waight, Dennis J. Underwood, Ekaterina V. Breous-Nystrom, Gerd Ritter, David Schaer, Daniel Hirschhorn-Cymerman, Taha Merghoub, Marc Van Dijk
  • Publication number: 20210171648
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Application
    Filed: October 22, 2020
    Publication date: June 10, 2021
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Takemasa TSUJI, Olivier LÉGER, Dennis J. UNDERWOOD, Marc VAN DIJK
  • Publication number: 20210051978
    Abstract: An extruded animal feed comprising minimally dewatered microalgal biomass and a porous mineral is disclosed. The livestock feed comprises a mixture of the porous mineral, such as zeolite, and a whole algal biomass containing between 2.0% to 15.0% solids. The whole algal biomass and the porous mineral are mixed together at a ratio of 1 part whole algal biomass to between 1 to 3 parts porous mineral. The extruded mixture can be formed by extruding the whole algal biomass and the porous mineral together, with or without additional ingredients. The extruded mixture of whole algal biomass and the porous mineral can be delivered as a feed supplement or can be further processed into a final feed composition. The feed supplement may comprise: Zeolite 2.5% to 12%; Microalgal biomass 1.0% to 7.5%; Flax between 40% to 60%; and a dry feed composition between 35% to 55%.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Applicant: SEB Farms, LLC
    Inventors: Bernard L. Hansen, Leonard J. Underwood
  • Patent number: 10836830
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 17, 2020
    Assignees: AGENUS INC., MEMORIAL SLOAN-KETTERING CANCER CENTER, LUDWIG INSTITUTE FOR CANCER RESEARCH LTD.
    Inventors: Nicholas S. Wilson, Jeremy D. Waight, Gerd Ritter, David Schaer, Daniel Hirschhorn-Cymerman, Taha Merghoub, Ekaterina V. Breous-Nystrom, Volker Seibert, Takemasa Tsuji, Olivier Léger, Dennis J. Underwood, Marc Van Dijk
  • Publication number: 20200338706
    Abstract: An extraction tool for the removal of fasteners with stripped heads. A method of extracting fasteners with stripped heads.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 29, 2020
    Applicant: Mockit Science, LLC
    Inventors: Robert Thomas Brent Cunningham, Thomas J. Underwood
  • Publication number: 20200339698
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Application
    Filed: January 15, 2020
    Publication date: October 29, 2020
    Inventors: Ana M. GONZALEZ, Nicholas S. WILSON, Dennis J. UNDERWOOD, Volker SEIBERT, Olivier LÉGER, Marc VAN DIJK, Roberta ZAPPASODI, Taha MERGHOUB, Jedd David WOLCHOK, David SCHAER, Gerd RITTER, Takemasa TSUJI
  • Patent number: 10800849
    Abstract: The present disclosure provides antibodies that specifically bind to human glucocorticoid-induced TNFR family related receptor (GITR) and compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and modulate GITR activity, e.g., enhance, activate or induce GITR activity, utilizing such antibodies. The present disclosure also provides methods for treating disorders, such as cancer and infectious diseases, by administering an antibody that specifically binds to human GITR and modulates GITR activity e.g., enhances, activates or induces GITR activity.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 13, 2020
    Assignees: Agenus Inc., Memorial Sloan-Kettering Cancer Center, Ludwig Institute for Cancer Research Ltd.
    Inventors: Ana M. Gonzalez, Nicholas S. Wilson, Dennis J. Underwood, Volker Seibert, Olivier Léger, Marc Van Dijk, Roberta Zappasodi, Taha Merghoub, Jedd David Wolchok, David Schaer, Gerd Ritter, Takemasa Tsuji
  • Publication number: 20200317797
    Abstract: The present disclosure provides multispecific (e.g., bispecific) antibodies that specifically bind to human GITR and/or human OX40 as well as compositions comprising such antibodies. In a specific aspect, the multispecific antibodies specifically bind to human GITR and OX40 and modulate GITR and/or OX40 activity, e.g., enhance, activate, or induce GITR and/or OX40 activity, or reduce, deactivate, or inhibit GITR and/or OX40 activity. The present disclosure also provides methods for treating disorders, such as cancer, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., enhances, activates, or induces GITR and/or OX40 activity. Also provided are methods for treating autoimmune or inflammatory diseases or disorders, by administering a multispecific antibody that specifically binds to human GITR and/or OX40 and modulates GITR and/or OX40 activity, e.g., reduces, deactivates, or inhibits GITR and/or OX40 activity.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Gerd RITTER, David SCHAER, Daniel HIRSCHHORN-CYMERMAN, Taha MERGHOUB, Ekaterina V. BREOUS-NYSTROM, Volker SEIBERT, Takemasa TSUJI, Olivier LÉGER, Dennis J. UNDERWOOD, Marc VAN DIJK
  • Publication number: 20200123265
    Abstract: The present disclosure provides antibodies that specifically bind to human GITR, as well as compositions comprising such antibodies. In a specific aspect, the antibodies specifically bind to human GITR and deactivate, reduce, or inhibit GITR activity. The present disclosure also provides methods for treating autoimmune or inflammatory diseases disorders, by administering an antibody that specifically binds to human GITR and deactivates, reduces, or inhibits GITR activity.
    Type: Application
    Filed: December 2, 2016
    Publication date: April 23, 2020
    Inventors: Nicholas S. WILSON, Jeremy D. WAIGHT, Gerd RITTER, Takemasa TSUJI, Olivier LÉGER, Volker SEIBERT, David SCHAER, Taha MERGHOUB, Dennis J. UNDERWOOD, Ana M. GONZALEZ, Marc VAN DIJK