Patents by Inventor J. W. Adriaan Sachtler

J. W. Adriaan Sachtler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6756340
    Abstract: A novel catalyst composite is disclosed. Also disclosed is a use for the novel composite. The catalyst composite comprises a Group VIII noble metal component, a Group IA or IIA metal component, and a component selected from the group consisting of tin, germanium, lead, indium, gallium, thallium, or mixtures thereof, all on an alumina support comprising essentially theta-alumina, having a surface area from about 50 to about 120 m2/g, an apparent bulk density of at 0.5 g/cm3 and a mole ratio of the Group VIII noble metal component to the component selected from the group consisting of tin, germanium, lead, indium, gallium, thallium or mixtures thereof in the range from about 1.5 to about 1.7.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: June 29, 2004
    Assignee: UOP LLC
    Inventors: Timur V. Voskoboynikov, Daniel H. Wei, J. W. Adriaan Sachtler, Bipin V. Vora
  • Publication number: 20030202934
    Abstract: A hydrocarbon dehydrogenation process utilizing a novel catalyst composite. The catalyst composite comprises a Group VIII noble metal component, a Group IA or IIA metal component, and a component selected from the group consisting of tin, germanium, lead, indium, gallium, thallium, or mixtures thereof, all on an alumina support comprising essentially theta-alumina, having a surface area from about 50 to about 120 m2/g, an apparent bulk density of at 0.5 g/cm3 and a mole ratio of the Group VIII noble metal component to the component selected from the group consisting of tin, germanium, lead, indium, gallium, thallium or mixtures thereof in the range from about 1.5 to about 1.7.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 30, 2003
    Inventors: Timur V. Voskoboynikov, Daniel H. Wei, J. W. Adriaan Sachtler, Bipin V. Vora
  • Publication number: 20030191351
    Abstract: A novel catalyst composite is disclosed. Also disclosed is a use for the novel composite. The catalyst composite comprises a Group VIII noble metal component, a Group IA or IIA metal component, and a component selected from the group consisting of tin, germanium, lead, indium, gallium, thallium, or mixtures thereof, all on an alumina support comprising essentially theta-alumina, having a surface area from about 50 to about 120 m2/g, an apparent bulk density of at 0.5 g/cm3 and a mole ratio of the Group VIII noble metal component to the component selected from the group consisting of tin, germanium, lead, indium, gallium, thallium or mixtures thereof in the range from about 1.5 to about 1.7.
    Type: Application
    Filed: April 8, 2002
    Publication date: October 9, 2003
    Inventors: Timur V. Voskoboynikov, Daniel H. Wei, J. W. Adriaan Sachtler, Bipin V. Vora
  • Patent number: 5498810
    Abstract: A process combination is disclosed to selectively upgrade naphtha to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy naphtha and isobutane; isobutane and isopentane in the product are obtained in superequilibrium concentrations. The heavy naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: March 12, 1996
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler, Robert J. Schmidt
  • Patent number: 5401385
    Abstract: A process combination is disclosed to selectively upgrade catalytically cracked gasoline to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock, preferably heavy naphtha, is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy synthesis naphtha and isobutane. The heavy synthesis naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: March 28, 1995
    Assignee: UOP
    Inventors: Robert J. Schmidt, Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5326925
    Abstract: An isomerization process maximizes the production of 2,3-dimethylbutane by using an arrangement of two reaction zones that operate at low conversion conditions to maximize the production of a methyl pentane containing intermediate and limit the interconversion of 2,3-dimethylbutane to 2,2-dimethylbutane. The process converts a feed comprising normal hexane in a first reaction zone. The effluent from the first reaction zone has a high concentration of methyl pentanes which is separated from normal hexane and passed to a second separation section that receives the effluent from a second reaction zone. Methyl pentanes from the first and second reaction zone effluents enter the second reaction zone for conversion to dimethylbutane in a high 2,3-dimethylbutane to 2,2-dimethylbutane ratio. In this manner the process produces a principally dimethylbutane product having a relatively high octane rating as a result of the high 2,3-dimethylbutane concentration.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: July 5, 1994
    Assignee: UOP
    Inventor: J. W. Adriaan Sachtler
  • Patent number: 5294328
    Abstract: A process combination is disclosed to reduce the aromatics content of a key component of gasoline blends. Paraffins contained in catalytic reformates are conserved and upgraded by separation and isomerization, reducing the reforming severity required to achieve a given product octane with concomitant reduction in paraffin aromatization and cracking. Light reformate may be separated and isomerized, and heavier paraffins are separated from the reformate by solvent extraction or adsorption; the recovered heavy paraffins are isomerized, optionally at a substoichiometric hydrogen ratio. A gasoline component having a reduced aromatics content relative to reformate of the same octane number is blended from the net products of the separation and isomerization steps.
    Type: Grant
    Filed: July 31, 1992
    Date of Patent: March 15, 1994
    Assignee: UOP
    Inventors: Robert J. Schmidt, Paula L. Bogdan, J. W. Adriaan Sachtler, Srikantiah Raghuram
  • Patent number: 5235120
    Abstract: A process combination is disclosed to selectively upgrade naphtha to obtain products suitable for further upgrading to reformulated fuels. A naphtha feedstock is hydrogenated to saturate aromatics, followed by selective isoparaffin synthesis to yield light and heavy naphtha and isobutane. The heavy naphtha may be processed by reforming, light naphtha may be isomerized, and isobutane may be upgraded by dehydrogenation, etherification and/or alkylation to yield gasoline components from the process combination suitable for production of reformulated gasoline.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: August 10, 1993
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5200059
    Abstract: A process combination is disclosed to reduce the aromatics content and increase the oxygen content of a key component of gasoline blends. A naphtha feedstock having a boiling range usually suitable as catalytic-reforming feed is processed by selective isoparaffin synthesis to yield lower-molecular weight hydrocarbons including a high yield of isobutane. The isobutane is processed to yield an ether component by dehydrogenation and etherification. The cracked light naphtha may be upgraded by isomerization. The heavier portion of the cracked naphtha is processed in a reformer. A gasoline component containing oxygen as ether and having a reduced aromatics content and increased volumetric yield relative to reformate of the same octane number is blended from the net products of the above processing steps. The process combination is particularly suited for use in an existing refinery.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: April 6, 1993
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5198097
    Abstract: A process combination is disclosed to reduce the aromatics content and increase the oxygen content of a key component of gasoline blends. A naphtha feedstock having a boiling range usually suitable as catalytic-reforming feed is processed by selective isoparaffin synthesis to yield lower-molecular weight hydrocarbons including a high yield of isobutane. A portion of the isobutane is processed to yield an ether component by dehydrogenation to yield isobutene followed by etherification. Part of the isobutane and isobutene are alkylated to produce an alkylate component. The synthesis light naphtha may be upgraded by isomerization. The heavier portion of the synthesis naphtha is processed in a reformer. A gasoline component containing oxygen as ether and having a reduced aromatics content and increased volumetric yield relative to reformate of the same octane number is blended from the net products of the above processing steps.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: March 30, 1993
    Assignee: UOP
    Inventors: Paula L. Bogdan, R. Joe Lawson, J. W. Adriaan Sachtler
  • Patent number: 5120890
    Abstract: A process is disclosed for reducing benzene and toluene content in light gasoline streams comprising benzene or benzene and toluene but comprising substantially no other aromatic-hydrocarbons. The light gasoline streams may be prepared by distillation of full boiling range gasoline streams from catalytic reforming or fluidized-bed catalytic cracking units. High alkylating agent to benzene ratios are utilized in the presence of a solid alkylation catalyst to achieve a benzene conversion of 70% of more in a single pass through the reaction zone. Alkylating agent is simultaneously injected into the alkylation zone at two or more separate injection points to minimize undersirable side reactions. The alkylation product may be recovered and blended with other gasoline components to produce automotive fuel which is low in benzene content and high octane in rating.
    Type: Grant
    Filed: December 31, 1990
    Date of Patent: June 9, 1992
    Assignee: UOP
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson
  • Patent number: 5053558
    Abstract: An improved process is disclosed for the isomerization of a non-equilibrium mixture of cresols to achieve a high yield of one or more cresol isomers using a catalyst comprising a Group VIII metal, a modifier, a pentasil zeolite, and an inorganic oxide binder.
    Type: Grant
    Filed: July 3, 1990
    Date of Patent: October 1, 1991
    Assignee: UOP
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson
  • Patent number: 4939110
    Abstract: An improved catalyst is disclosed for the conversion of aromatic hydrocarbons which comprise a Group VIII metal, lead, a pentasil zeolite, and an inorganic oxide binder, wherein 80-100% of the Group VIII metal and 60-100% of the lead are contained on the binder. An alkylaromatic isomerization process also is disclosed which is particularly effective for the conversion of ethylbenzene without substantial loss of xylenes.
    Type: Grant
    Filed: August 14, 1989
    Date of Patent: July 3, 1990
    Assignee: UOP
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson
  • Patent number: 4886927
    Abstract: This invention presents a process for isomerizing a non-equilibrium mixture of xylenes containing ethylbenzene, using a novel catalyst formulation comprising at least one Group VIII metal, a gallium-substituted pentasil zeolite and a matrix material of zirconia-alumina.
    Type: Grant
    Filed: December 8, 1988
    Date of Patent: December 12, 1989
    Assignee: UOP
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson, Susan L. Lambert
  • Patent number: 4874731
    Abstract: An improved catalyst for the isomerization of non-equilibrium C.sub.8 aromatics is presented which utilizes a novel catalytic composition. This catalyst comprises a Group VIII metal component, a bismuth component, and crystalline aluminosilicate zeolite having a silica to alumina ratio of at least 12. An isomerization process is also disclosed which has a particular utility for the conversion of ethylbenzene without the deleterious loss of xylene.
    Type: Grant
    Filed: October 13, 1987
    Date of Patent: October 17, 1989
    Assignee: UOP
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson
  • Patent number: 4873387
    Abstract: An improved process for the isomerization of non-equilibrium C.sub.8 aromatics is presented which utilizes a novel catalytic composition. This catalyst comprises a Group VIII metal component, a bismuth component, and crystalline aluminosilicate zeolite having a silica to alumina ratio of at least 12. This isomerization process has a particular utility for the conversion of ethylbenzene without the deleterious loss of xylene.
    Type: Grant
    Filed: December 21, 1988
    Date of Patent: October 10, 1989
    Assignee: UOP
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson
  • Patent number: 4861740
    Abstract: An isomerization catalyst is prepared by a novel method of incorporating magnesium into a crystalline aluminosilicate. The catalyst comprises an alumina matrix, a magnesium-containing zeolite, and a Group VIII metal component. It has been found that the method of magnesium addition can dramatically affect the selectivity to para-xylene, as measured by the loss of C.sub.8 aromatics due to undesirable side-reactions during the isomerization of C.sub.8 aromatics. The method of the instant invention involves addition of the magnesium to a hydrogel comprising pseudo-boehmite and a zeolite.
    Type: Grant
    Filed: July 11, 1988
    Date of Patent: August 29, 1989
    Assignee: UOP
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson
  • Patent number: 4795550
    Abstract: This invention presents a novel treating process for the removal of trace quantities of olefinic impurities from a hydrocarbon process stream. Specifically, this process operates at liquid phase conditions treating hydrocarbon streams comprising substantially aromatics and naphthenes having Bromine Index values of about 50 to 2,000. A solid medium comprising a crystalline aluminosilicate zeolite and a refractory oxide is used to reduce the level of olefin impurities to Bromine Index values of 0.1 to 50.
    Type: Grant
    Filed: April 3, 1987
    Date of Patent: January 3, 1989
    Assignee: UOP Inc.
    Inventors: J. W. Adriaan Sachtler, Paul T. Barger
  • Patent number: 4762957
    Abstract: An improved process for the isomerization of non-equilibrium C.sub.8 aromatics is presented which utilizes a catalytic composition prepared by a novel method of incorporating magnesium into a crystalline aluminosilicate. The catalyst comprises an alumina matrix, a magnesium-containing zeolite, and a Group VIII metal component. It has also been found that the method of magnesium addition can dramatically affect the selectivity to para-xylene, as measured by the loss of C.sub.8 aromatics due to undesirable side-reactions. The method of the instant invention involves addition of the magnesium to a hydrogel comprising pseudoboehmite and zeolite.
    Type: Grant
    Filed: June 10, 1987
    Date of Patent: August 9, 1988
    Assignee: UOP Inc.
    Inventors: J. W. Adriaan Sachtler, R. Joe Lawson
  • Patent number: 4695666
    Abstract: An improved process for the isomerization of non-equilibrium C.sub.8 aromatics is presented which utilizes a novel catalytic composition. This catalyst comprises phosphorus-containing alumina, a gallium component, and crystalline aluminosilicate zeolite having a silica to alumina ratio of at least 12. The isomerization process has a particular utility for the conversion of ethylbenzene without the deleterious loss of xylene.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: September 22, 1987
    Assignee: UOP Inc.
    Inventors: Tai-Hsiang Chao, J. W. Adriaan Sachtler