Patents by Inventor Jaap Ferdinand Vente

Jaap Ferdinand Vente has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11897839
    Abstract: The invention relates to an improved process and system for the synthesis of dimethyl ether (DME) from a feedstock comprising H2 and COx, wherein x=1-2. The process according to the invention comprises (a) subjecting the gaseous mixture comprising synthesis gas originating from step (c) to DME synthesis by contacting it with a catalyst capable of converting synthesis gas to DME to obtain a gaseous mixture comprising DME; (b) subjecting a gaseous mixture comprising the gaseous mixture originating from step (a) to a separation-enhanced reverse water gas shift reaction; and (c) subjecting the gaseous mixture originating from step (b) to DME/synthesis gas separation to obtain DME and a gaseous mixture comprising synthesis gas, which is recycled to step (a). Herein, the feedstock is introduced in step (a) or step (b) and the molar ratio of H2 to COx in the gaseous mixture which is subjected to step (b) is at least (x+0.8). Also a system for performing the reaction according to the invention is disclosed.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 13, 2024
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST—NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Franciscus Petrus Felix Van Berkel, Hendricus Adrianus Johannes Van Dijk, Paul Dean Cobden, Willem Gerrit Haije, Jaap Ferdinand Vente
  • Publication number: 20210292163
    Abstract: The present invention relates to a process for the production of carbon dioxide and ammonia for the production of urea or ammonium carbamate from residual gases in the steel and metal industries, in particular basic oxygen furnace (BOF) gas and/or blast furnace (BF) gas. The process according to the invention comprises: (a) subjecting a mixture comprising (i) basic oxygen furnace gas and/or blast furnace gas and (ii) steam to a separation-enhanced water gas shift reaction to obtain a first product gas comprising H2 and N2 and a second product gas comprising CO2; (b) subjecting the first product gas originating from step (a) to NH3 synthesis to obtain a product gas comprising NH3; and (c) optionally subjecting at least part of the CO2 originating from step (a) and at least part of the NH3 originating from step (b) to the synthesis of urea or ammonium carbamate.
    Type: Application
    Filed: August 2, 2019
    Publication date: September 23, 2021
    Applicant: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventors: Jaap Ferdinand Vente, Vasileios Sfakianakis, Paul Dean Cobden
  • Publication number: 20200399195
    Abstract: The invention relates to an improved process and system for the synthesis of dimethyl ether (DME) from a feedstock comprising H2 and COx, wherein x=1-2. The process according to the invention comprises (a) subjecting the gaseous mixture comprising synthesis gas originating from step (c) to DME synthesis by contacting it with a catalyst capable of converting synthesis gas to DME to obtain a gaseous mixture comprising DME; (b) subjecting a gaseous mixture comprising the gaseous mixture originating from step (a) to a separation-enhanced reverse water gas shift reaction; and (c) subjecting the gaseous mixture originating from step (b) to DME/synthesis gas separation to obtain DME and a gaseous mixture comprising synthesis gas, which is recycled to step (a). Herein, the feedstock is introduced in step (a) or step (b) and the molar ratio of H2 to COx in the gaseous mixture which is subjected to step (b) is at least (x+0.8). Also a system for performing the reaction according to the invention is disclosed.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Applicant: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventors: Franciscus Petrus Felix VAN BERKEL, Hendricus Adrianus Johannes VAN DIJK, Paul Dean COBDEN, Willem Gerrit HAIJE, Jaap Ferdinand VENTE
  • Patent number: 10759728
    Abstract: The invention relates to an improved process and system for the synthesis of dimethyl ether (DME) from a feedstock comprising H2 and COx, wherein x=1-2. The process according to the invention comprises (a) subjecting the gaseous mixture comprising synthesis gas originating from step (c) to DME synthesis by contacting it with a catalyst capable of converting synthesis gas to DME to obtain a gaseous mixture comprising DME; (b) subjecting a gaseous mixture comprising the gaseous mixture originating from step (a) to a separation-enhanced reverse water gas shift reaction; and (c) subjecting the gaseous mixture originating from step (b) to DME/synthesis gas separation to obtain DME and a gaseous mixture comprising synthesis gas, which is recycled to step (a). Herein, the feedstock is introduced in step (a) or step (b) and the molar ratio of H2 to COx in the gaseous mixture which is subjected to step (b) is at least (x+0.8). Also a system for performing the reaction according to the invention is disclosed.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: September 1, 2020
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Franciscus Petrus Felix Van Berkel, Hendricus Adrianus Johannes Van Dijk, Paul Dean Cobden, Willem Gerrit Haije, Jaap Ferdinand Vente
  • Patent number: 10377696
    Abstract: An apparatus for separating dimethyl carbonate using pervaporation includes: an atmospheric distillation column and a high pressure distillation column distilling a mixture containing dimethyl carbonate and methanol and separating dimethyl carbonate from the mixture; and a pervaporation membrane module disposed between the atmospheric distillation column and the high pressure distillation column and allowing for permeation of the methanol to separate the methanol from the mixture, thereby reducing heat consumption and a process cost as compared to the case of only using an existing pressure swing distillation method.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: August 13, 2019
    Assignees: POSCO, NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Joon-Hyun Baik, Jaap Ferdinand Vente, Anatolie Motelica
  • Patent number: 10232323
    Abstract: The invention provides a membrane suitable for dewatering acidic mixtures, comprising a bridged organosilica directly applied on a macroporous support in the absence of an intermediate mesoporous or finer layer. The bridged organic silica comprises divalent C1-C9 organic groups A2 and/or trivalent C1-C9 organic groups A3 directly bound to the silicon atoms of the organosilica. In particular, the membrane comprises bis-silylmethane or bis-silylethane groups. The membranes effectively separate water from acidic mixtures at high temperatures and without decrease in performance for at least several months.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: March 19, 2019
    Assignee: STICHTING ENERGIEONDERZOEK CENTRUM NEDERLAND
    Inventors: Marc Matheus Antonius Van Tuel, Maria Dirkje Anna Rietkerk, Henk Martin Van Veen, Jaap Ferdinand Vente, Johannis Pieter Overbeek
  • Publication number: 20190016656
    Abstract: The invention relates to an improved process and system for the synthesis of dimethyl ether (DME) from a feedstock comprising H2 and COx, wherein x=1-2. The process according to the invention comprises (a) subjecting the gaseous mixture comprising synthesis gas originating from step (c) to DME synthesis by contacting it with a catalyst capable of converting synthesis gas to DME to obtain a gaseous mixture comprising DME; (b) subjecting a gaseous mixture comprising the gaseous mixture originating from step (a) to a separation-enhanced reverse water gas shift reaction; and (c) subjecting the gaseous mixture originating from step (b) to DME/synthesis gas separation to obtain DME and a gaseous mixture comprising synthesis gas, which is recycled to step (a). Herein, the feedstock is introduced in step (a) or step (b) and the molar ratio of H2 to COx in the gaseous mixture which is subjected to step (b) is at least (x+0.8). Also a system for performing the reaction according to the invention is disclosed.
    Type: Application
    Filed: January 12, 2017
    Publication date: January 17, 2019
    Applicant: Stichting Energieonderzoek Centrum Nederland
    Inventors: Franciscus Petrus Felix VAN BERKEL, Hendricus Adrianus Johannes VAN DIJK, Paul Dean COBDEN, Willem Gerrit HAIJE, Jaap Ferdinand VENTE
  • Publication number: 20170349530
    Abstract: An apparatus for separating dimethyl carbonate using pervaporation includes: an atmospheric distillation column and a high pressure distillation column distilling a mixture containing dimethyl carbonate and methanol and separating dimethyl carbonate from the mixture; and a pervaporation membrane module disposed between the atmospheric distillation column and the high pressure distillation column and allowing for permeation of the methanol to separate the methanol from the mixture, thereby reducing heat consumption and a process cost as compared to the case of only using an existing pressure swing distillation method.
    Type: Application
    Filed: December 24, 2015
    Publication date: December 7, 2017
    Inventors: Joon-Hyun BAIK, Jaap Ferdinand VENTE, Anatolie MOTELICA
  • Publication number: 20150217240
    Abstract: The invention provides a membrane suitable for dewatering acidic mixtures, comprising a bridged organosilica directly applied on a macroporous support in the absence of an intermediate mesoporous or finer layer. The bridged organic silica comprises divalent C1-C9 organic groups A2 and/or trivalent C1-C9 organic groups A3 directly bound to the silicon atoms of the organosilica. In particular, the membrane comprises bis-silylmethane or bis-silylethane groups. The membranes effectively separate water from acidic mixtures at high temperatures and without decrease in performance for at least several months.
    Type: Application
    Filed: August 9, 2013
    Publication date: August 6, 2015
    Applicant: Stichting Energieonderzoek Centrum Nederland
    Inventors: Marc Matheus Antonius Van Tuel, Maria Dirkje Anna Rietkerk, Henk Martin Van Veen, Jaap Ferdinand Vente, Johannis Pieter Overbeek
  • Publication number: 20140287156
    Abstract: Membranes of the invention comprise a hybrid silica film on a organic polymer support. The silica comprises organic bridging groups bound to two or more silicon atoms, in particular at least 1 of said organic bridging groups per 10 silicon atoms. The membranes can be produced by dry chemistry processes, in particular plasma-enhanced vapour deposition of bridged silane precursors, or by wet chemistry involving hydrolysis of the bridged silane precursors. The membranes are inexpensive and efficient for separation of small molecules and filtration processes.
    Type: Application
    Filed: November 2, 2012
    Publication date: September 25, 2014
    Inventors: Robert Kreiter, Mariadriana Creatore, Folker Petrus Cuperus, Jaap Ferdinand Vente, Patrick Herve Tchoua Ngamou
  • Patent number: 8709254
    Abstract: A microporous organic-inorganic hybrid membrane based on silica of the invention has an average pore diameter of less than 0.6 nm, and comprises bridging organosilane moieties of the formula ?O1.5Si—CHR—SiO1.5? or ?O1.5Si—CH(CH3)—SiO1.5?. The membrane can be used in the separation of hydrogen from mixtures comprising hydrogen and CH4, CO2, CO, N2, and the like, and in the separation of water from alcohols having 1-3 carbon atoms, optionally in the presence of an inorganic or organic acid.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: April 29, 2014
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Rob Kreiter, Hessel Lennart Castricum, Jaap Ferdinand Vente, Johan Evert Ten Elshof, Maria Dirkje Anna Rietkerk, Henk Martin Veen
  • Publication number: 20130126432
    Abstract: Selective retaining a relatively hydrophilic molecule from a mixture of a relatively hydrophobic molecule and the relatively hydrophilic molecule can be achieved using a hydrophobic, microporous hybrid membrane based on silica, wherein at least 25% of the silicon atoms is bound to a bridging C1-C12-hyrdocarbylene group. The average number of carbon atoms of the bridging groups and any additional monovalent organic groups, taken together, is at least 3.5. The membrane can be part of a production facility for separating alcohol/water mixtures.
    Type: Application
    Filed: May 16, 2011
    Publication date: May 23, 2013
    Applicant: Stichting Energieonderzoek Centrum Nederland
    Inventors: Robert Kreiter, Goulven Gildas Paradis, Jaap Ferdinand Vente, Hessel Lennart Castricum, Johan Evert Ten Elshof
  • Patent number: 8277661
    Abstract: A hydrothermally stable, microporous organic-inorganic hybrid membrane based on silica, having an mean pore diameter of between 0.2 and 1.5 nm, is characterised in that between 5 and 40 mole % of the Si—O—Si bonds have been replaced by moieties having the one of the formulas: Si—{[CmH(n-1)X]—Si—}q, Si—[CmH(n-2)X2]—Si or Si—CmHn—Si{(CmHn)—Si—}y in which m=1-8, n=2m, 2m?2, 2m?4, 2m?6 or 2m?8; provided that n?2, X=H or (CH2)pSi, p=0 or 1, and q=1, 2, 3 or 4. The membrane can be produced by acid-catalysed hydrolysis of suitable bis-silane precursors such as bis(trialkoxysily)alkanes, preferably in the presence of monoorganyl-silane precursors such as trialkoxy-alkylsilanes.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: October 2, 2012
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Ashima Sah, Hessel Lennart Castricum, Jaap Ferdinand Vente, David Hermanus Adrianus Blank, Johan Evert Ten Elshof
  • Publication number: 20110259825
    Abstract: A microporous organic-inorganic hybrid membrane based on silica of the invention has an average pore diameter of less than 0.6 nm, and comprises bridging organosilane moieties of the formula ?O1.5Si—CHR—SiO1.5? or ?O1.5Si—CH(CH3)—SiO1.5?. The membrane can be used in the separation of hydrogen from mixtures comprising hydrogen and CH4, CO2, CO, N2, and the like, and in the separation of water from alcohols having 1-3 carbon atoms, optionally in the presence of an inorganic or organic acid.
    Type: Application
    Filed: July 14, 2009
    Publication date: October 27, 2011
    Inventors: Rob Kreiter, Hessel Lennart Castricum, Jaap Ferdinand Vente, Johan Evert Ten Elshof, Maria Dirkje Anna, Henk Martin Veen
  • Publication number: 20090246114
    Abstract: A hydrothermally stable, microporous organic-inorganic hybrid membrane based on silica, having an mean pore diameter of between 0.2 and 1.5 nm, is characterised in that between 5 and 40 mole % of the Si—O—Si bonds have been replaced by moieties having the one of the formulas: Si—{[CmH(n-1)X]—Si—}q, Si—[CmH(n-2)X2]—Si or Si—CmHn—Si{(CmHn)—Si—}y in which m=1-8, n=2m, 2m-2, 2m-4, 2m-6 or 2m-8; provided that n?2, X=H or (CH2)pSi, p=0 or 1, and q=1, 2, 3 or 4. The membrane can be produced by acid-catalysed hydrolysis of suitable bis-silane precursors such as bis(trialkoxysily)alkanes, preferably in the presence of monoorganyl-silane precursors such as trialkoxy-alkylsilanes.
    Type: Application
    Filed: January 16, 2007
    Publication date: October 1, 2009
    Applicant: STICHTING ENERGIEONDERZOEK CENTRUM NEDERLAND
    Inventors: Ashima Sah, Hessel Lennart Castricum, Jaap Ferdinand Vente, David Hermanus Adrianus Blank, Johan Evert Ten Elshof