Patents by Inventor Jack F. Thomas

Jack F. Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8691647
    Abstract: In one embodiment, a semiconductor device is disclosed. The semiconductor device is formed on a semiconductor substrate having an active region, the semiconductor device comprising: a gate dielectric layer disposed on the semiconductor substrate, the gate dielectric layer having at least two sub-layers with at least one sub-layer having a dielectric constant greater than SiO2; a floating gate formed on the gate dielectric layer defining a channel interposed between a source and a drain formed within the active region of the semiconductor substrate; a control gate formed above the floating gate; and an intergate dielectric layer interposed between the floating gate and the control gate, the intergate dielectric layer comprising: a first layer formed on the floating gate; a second layer formed on the first layer; and a third layer formed on the second layer, wherein each of the first, second and third layers has a dielectric constant greater than SiO2.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: April 8, 2014
    Assignee: Spansion LLC
    Inventors: Wei Zheng, Arvind Halliyal, Mark T. Ramsbey, Jack F. Thomas
  • Patent number: 7001807
    Abstract: A method of fabricating a dual bit dielectric memory cell structure on a silicon substrate includes implanting buried bit lines within the substrate and fabricating a layered island on the surface of the substrate between the buried bit lines. The island has a perimeter defining a gate region, and comprises a tunnel dielectric layer on the surface of the silicon on insulator wafer, an isolation barrier dielectric layer on the surface of the tunnel dielectric layer, a top dielectric layer on the surface of the isolation barrier dielectric layer, and a polysilicon gate on the surface of the top dielectric layer. A portion of the isolation barrier dielectric layer is removed to form an undercut region within the gate region and a charge trapping material is deposited within the undercut region.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: February 21, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Wei Zheng, Mark W. Randolph, Nicholas H. Tripsas, Zoran Krivokapic, Jack F. Thomas, Mark T. Ramsbey
  • Patent number: 6861307
    Abstract: A method of fabricating a dual bit dielectric memory cell structure on a silicon substrate includes implanting buried bit lines within the substrate and fabricating a layered island on the surface of the substrate between the buried bit lines. The island has a perimeter defining a gate region, and comprises a tunnel dielectric layer on the surface of the silicon on insulator wafer, an isolation barrier dielectric layer on the surface of the tunnel dielectric layer, a top dielectric layer on the surface of the isolation barrier dielectric layer, and a polysilicon gate on the surface of the top dielectric layer. A portion of the isolation barrier dielectric layer is removed to form an undercut region within the gate region and a charge trapping material is deposited within the undercut region.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 1, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Wei Zheng, Mark W. Randolph, Nicholas H. Tripsas, Zoran Krivokapic, Jack F. Thomas, Mark T. Ramsbey
  • Publication number: 20040021172
    Abstract: A method of fabricating a dual bit dielectric memory cell structure on a silicon substrate includes implanting buried bit lines within the substrate and fabricating a layered island on the surface of the substrate between the buried bit lines. The island has a perimeter defining a gate region, and comprises a tunnel dielectric layer on the surface of the silicon on insulator wafer, an isolation barrier dielectric layer on the surface of the tunnel dielectric layer, a top dielectric layer on the surface of the isolation barrier dielectric layer, and a polysilicon gate on the surface of the top dielectric layer. A portion of the isolation barrier dielectric layer is removed to form an undercut region within the gate region and a charge trapping material is deposited within the undercut region.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 5, 2004
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Wei Zheng, Mark W. Randolph, Nicholas H. Tripsas, Zoran Krivokapic, Jack F. Thomas, Mark T. Ramsbey
  • Patent number: 6670691
    Abstract: A method for filling narrow isolation trenches during a semiconductor fabrication process is disclosed. The semiconductor includes both high-aspect ratio narrow isolation trenches formed in a core area of a substrate, and wide isolation trenches formed in a circuit area of the substrate. After trench formation, a thick liner oxidation is performed in all of the isolation trenches in which a layer of thermal oxide is grown to a thickness sufficient to completely fill the high-aspect ratio narrow isolation trenches. Subsequent to the liner oxidation, the wide isolation trenches are filled with an isolation dielectric, whereby all of the trenches are uniformly filled with minimal voids.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: December 30, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Harpreet K. Sachar, Unsoon Kim, Jack F. Thomas
  • Patent number: 6639271
    Abstract: A method of fabricating a dual bit dielectric memory cell structure on a silicon substrate includes implanting buried bit lines within the substrate and fabricating a layered island on the surface of the substrate between the buried bit lines. The island has a perimeter defining a gate region, and comprises a tunnel dielectric layer on the surface of the silicon on insulator wafer, an isolation barrier dielectric layer on the surface of the tunnel dielectric layer, a top dielectric layer on the surface of the isolation barrier dielectric layer, and a polysilicon gate on the surface of the top dielectric layer. A portion of the isolation barrier dielectric layer is removed to form an undercut region within the gate region and a charge trapping material is deposited within the undercut region.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: October 28, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Wei Zheng, Mark W. Randolph, Nicholas H. Tripsas, Zoran Krivokapic, Jack F. Thomas, Mark T. Ramsbey
  • Patent number: 6610577
    Abstract: A method for removing polysilicon from isolation regions on a substrate during semiconductor fabrication is disclosed. The method includes depositing a layer of polysilicon over the substrate, and depositing at least one dielectric layer over the polysilicon. The method further includes polishing the polysilicon from the isolation regions, wherein the dielectric layers act as a polishing stop, resulting in regions of polysilicon that are self-aligned to the trench isolation regions.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: August 26, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jack F. Thomas, Unsoon Kim, Krishnashree Achuthan
  • Patent number: 6242773
    Abstract: Non-volatile memory semiconductor device manufacturing throughput is increased by simultaneously patterning the floating gate layer and dielectric layer formed thereon. Embodiments include forming sidewall dielectric layers joined with one of the isolation insulating regions to enhance insulation of the floating gate electrode.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: June 5, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Jack F. Thomas
  • Patent number: 6136510
    Abstract: The accuracy of photolithographic processing, particularly in forming small diameter through holes and/or trenches in a dielectric layer, is improved by double-sided scrubbing the wafer prior to photolithography. It was found that particles adhering to the wafer backside resulting from prior processing steps cause inaccurate photolithographic processing, particularly at a submicron level. Double-sided wafer scrubbing removes such adhering particles, thereby improving photolithographic accuracy.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: October 24, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Tho Le La, Subramanian N. Venkatkrishnan, Mark T. Ramsbey, Jack F. Thomas, Kathleen Regina Early
  • Patent number: 5780204
    Abstract: The accuracy of photolithographic processing, particularly in forming small diameter through holes and/or trenches in a dielectric layer, is improved by polishing the wafer backside prior to photolithography. It was found that particles adhering to and/or scratches on the wafer backside resulting from prior processing steps cause inaccurate photolithographic processing, particularly at a submicron level. Backside polishing, as by chemical-/mechanical polishing, removes such adhering particles and/or scratches, thereby improving photolithographic accuracy.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: July 14, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Tho Le La, Subramanian Venkatkrishnan, Mark T. Ramsbey, Jack F. Thomas, Kathleen Early