Patents by Inventor Jack H. Wang

Jack H. Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200194434
    Abstract: Embodiments herein describe techniques for a semiconductor device including a substrate oriented in a horizontal direction, and a memory cell including a transistor and a capacitor above the substrate. The transistor includes a gate electrode oriented in a vertical direction substantially orthogonal to the horizontal direction, and a channel layer oriented in the vertical direction, around the gate electrode and separated by a gate dielectric layer from the gate electrode. The capacitor is within an inter-level dielectric layer above the substrate. The capacitor includes a first plate coupled with a second portion of the channel layer of the transistor, and a second plate separated from the first plate by a capacitor dielectric layer. The first plate of the capacitor is also a source electrode of the transistor. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 18, 2020
    Inventors: Juan G. ALZATE VINASCO, Abhishek A. SHARMA, Fatih HAMZAOGLU, Bernhard SELL, Pei-Hua WANG, Van H. LE, Jack T. KAVALIEROS, Tahir GHANI, Chieh-Jen KU, Travis W. LAJOIE, Umut ARSLAN
  • Publication number: 20200098932
    Abstract: Embodiments herein describe techniques for a semiconductor device including a capacitor and a transistor above the capacitor. A contact electrode may be shared between the capacitor and the transistor. The capacitor includes a first plate above a substrate, and the shared contact electrode above the first plate and separated from the first plate by a capacitor dielectric layer, where the shared contact electrode acts as a second plate for the capacitor. The transistor includes a gate electrode above the substrate and above the capacitor; a channel layer separated from the gate electrode by a gate dielectric layer, and in contact with the shared contact electrode; and a source electrode above the channel layer, separated from the gate electrode by the gate dielectric layer, and in contact with the channel layer. The shared contact electrode acts as a drain electrode of the transistor. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 26, 2020
    Inventors: Travis W. LAJOIE, Abhishek SHARMA, Van H. LE, Chieh-Jen KU, Pei-Hua WANG, Jack T. KAVALIEROS, Bernhard SELL, Tahir GHANI, Juan ALZATE VINASCO
  • Publication number: 20200091156
    Abstract: Described herein are two transistor (2T) memory cells that use TFTs as access and gain transistors. When one or both transistors of a 2T memory cell are implemented as TFTs, these transistors may be provided in different layers above a substrate, enabling a stacked architecture. An example 2T memory cell includes an access TFT provided in a first layer over a substrate, and a gain TFT provided in a second layer over the substrate, the first layer being between the substrate and the second layer (i.e., the gain TFT is stacked in a layer above the access TFT). Stacked TFT based 2T memory cells allow increasing density of memory cells in a memory array having a given footprint area, or, conversely, reducing the footprint area of the memory array with a given memory cell density.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Juan G. Alzate-Vinasco, Fatih Hamzaoglu, Bernhard Sell, Pei-hua Wang, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Umut Arslan, Travis W. Lajoie, Chieh-jen Ku
  • Publication number: 20200035683
    Abstract: Described herein are arrays of embedded dynamic random-access memory (eDRAM) cells that use TFTs as selector transistors. When at least some selector transistors are implemented as TFTs, different eDRAM cells may be provided in different layers above a substrate, enabling a stacked architecture. An example stacked TFT based eDRAM includes one or more memory cells provided in a first layer over a substrate and one or more memory cells provided in a second layer, above the first layer, where at least the memory cells in the second layer, but preferably the memory cells in both the first and second layers, use TFTs as selector transistors. Stacked TFT based eDRAM allows increasing density of memory cells in a memory array having a given footprint area, or, conversely, reducing the footprint area of the memory array with a given memory cell density.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 30, 2020
    Applicant: Inte Corpooration
    Inventors: Abhishek A. Sharma, Juan G. Alzate-Vinasco, Fatih Hamzaoglu, Bernhard Sell, Pei-hua Wang, Van H. Le, Jack T. Kavalieros, Tahir Ghani, Umut Arslan, Travis W. Lajoie, Chieh-jen Ku
  • Patent number: 7378392
    Abstract: Purified cartilage and/or bone inductive proteins and processes for producing them are disclosed. The proteins may be used in the treatment of bone and/or cartilage defects and in wound healing and related tissue repair.
    Type: Grant
    Filed: October 6, 1994
    Date of Patent: May 27, 2008
    Assignee: Genetics Institute, LLC
    Inventors: Rodney M. Hewick, Jack H. Wang, John M. Wozney, Anthony J. Celeste
  • Patent number: 7122377
    Abstract: The method of the invention provides novel compounds, termed acid-labile isotope-coded extractants (ALICE), for quantitative mass spectrometric analysis of protein mixtures. The compounds contain a thiol-reactive group that is used to capture cysteine-containing peptides from all peptide mixtures, an acid-labile linker, and a non-biological polymer. One of the two acid-labile linkers is isotopically labeled and therefore enables the direct quantitation of peptides/proteins through mass spectrometric analysis. Because no functional proteins are required to capture peptides, a higher percentage of organic solvent can be used to solubilize the peptides, particularly hydrophobic peptides, through the binding, washing and eluting steps, thus permitting much better recover of peptides. Moreover, since the peptides are covalently linked to the non-biological polymer (ALICE), more stringent washing is allowed in order to completely remove non-specifically bound species.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: October 17, 2006
    Assignee: Genetics Institute, LLC
    Inventors: Yongchang Qiu, Jack H. Wang, Rodney M. Hewick
  • Patent number: 6905879
    Abstract: Arginine-containing cysteine-modifying compounds useful for MALDI-MS analysis of proteins are provided. These compounds termed isotope-coded ionization enhancement reagents (ICIER) can provide ionization enhancement in MALDI-MS, relative quantitation, and additional database searching constraints at the same time without any extra sample manipulation. More specifically, ICIER increase the ionization efficiency of cysteine-containing peptides by attachment of a guanidino functional group. ICIER also increase the overall hydrophilicity of these peptides due to the hydrophilic nature of ICIER and thus increase the percentage of recovery of these peptides during sample handling and processing such as in-gel digestion or liquid chromatography.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: June 14, 2005
    Assignee: Genetics Institute, Inc.
    Inventors: Yongchang Qiu, Jack H. Wang, Rodney M. Hewick
  • Patent number: 6902936
    Abstract: The method of the invention provides novel compounds, termed acid-labile isotope-coded extractants (ALICE), for quantitative mass spectrometric analysis of protein mixtures. The compounds contain a thiol-reactive group that is used to capture cysteine-containing peptides from all peptide mixtures, an acid-labile linker, and a non-biological polymer. One of the two acid-labile linkers is isotopically labeled and therefore enables the direct quantitation of peptides/proteins through mass spectrometric analysis. Because no functional proteins are required to capture peptides, a higher percentage of organic solvent can be used to solubilize the peptides, particularly hydrophobic peptides, through the binding, washing and eluting steps, thus permitting much better recovery of peptides. Moreover, since the peptides are covalently linked to the non-biological polymer (ALICE), more stringent washing is allowed in order to completely remove non-specifically bound species.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: June 7, 2005
    Assignee: Genentics Institute, Inc.
    Inventors: Yongchang Qiu, Jack H. Wang, Rodney M. Hewick
  • Publication number: 20030054570
    Abstract: Arginine-containing cysteine-modifying compounds useful for MALDI-MS analysis of proteins are provided. These compounds termed isotope-coded ionization enhancement reagents (ICIER) can provide ionization enhancement in MALDI-MS, relative quantitation, and additional database searching constraints at the same time without any extra sample manipulation. More specifically, ICIER increase the ionization efficiency of cysteine-containing peptides by attachment of a guanidino functional group. ICIER also increase the overall hydrophilicity of these peptides due to the hydrophilic nature of ICIER and thus increase the percentage of recovery of these peptides during sample handling and processing such as in-gel digestion or liquid chromatography.
    Type: Application
    Filed: October 22, 2001
    Publication date: March 20, 2003
    Applicant: Genetics Institute, Inc.
    Inventors: Yongchang Qiu, Jack H. Wang, Rodney M. Hewick
  • Publication number: 20020164809
    Abstract: The method of the invention provides novel compounds, termed acid-labile isotope-coded extractants (ALICE), for quantitative mass spectrometric analysis of protein mixtures. The compounds contain a thiol-reactive group that is used to capture cysteine-containing peptides from all peptide mixtures, an acid-labile linker, and a non-biological polymer. One of the two acid-labile linkers is isotopically labeled and therefore enables the direct quantitation of peptides/proteins through mass spectrometric analysis. Because no functional proteins are required to capture peptides, a higher percentage of organic solvent can be used to solubilize the peptides, particularly hydrophobic peptides, through the binding, washing and eluting steps, thus permitting much better recovery of peptides. Moreover, since the peptides are covalently linked to the non-biological polymer (ALICE), more stringent washing is allowed in order to completely remove non-specifically bound species.
    Type: Application
    Filed: October 22, 2001
    Publication date: November 7, 2002
    Applicant: Genetics Institute, Inc.
    Inventors: Yongchang Qiu, Jack H. Wang, Rodney M. Hewick
  • Patent number: 5688678
    Abstract: Purified cartilage and/or bone inductive proteins and processes for producing them are disclosed. The proteins may be used in the treatment of bone and/or cartilage defects and in wound healing and related tissue repair.
    Type: Grant
    Filed: November 26, 1991
    Date of Patent: November 18, 1997
    Assignee: Genetics Institute, Inc.
    Inventors: Rodney M. Hewick, Jack H. Wang, John M. Wozney, Anthony J. Celeste
  • Patent number: D622527
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 31, 2010
    Inventor: Jack H Wang