Patents by Inventor Jack Kotovsky

Jack Kotovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962129
    Abstract: The present disclosure relates to a laser diode system. The system may have at least one laser diode emitter having a substrate, at least one laser diode supported on the substrate, and a facet which a laser beam generated by the laser diode is emitted. A cooling subsystem is included which is disposed in contact with the substrate of the laser diode emitter. The cooling subsystem includes a plurality of cooling fins forming a plurality of elongated channels for circulating a cooling fluid therethrough to cool the laser diode emitter. The cooling fluid also flows over the facet of the laser diode emitter.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: April 16, 2024
    Assignees: Lawrence Livermore National Security, LLC, Colorado State University Research Foundation
    Inventors: Jack Kotovsky, Salmaan H. Baxamusa, Clint D. Frye, Ian Seth Ladner, Thomas M. Spinka, Devin Joseph Funaro, David Ryan Hobby, Caleb Del Anderson, Todd Bandhauer
  • Patent number: 11725996
    Abstract: Measurement of pressure of a fluid in a vessel using a cantilever spring in the vessel; a magnet connected to the cantilever spring in the vessel; an electromagnet outside of the vessel operatively connected to the magnet and the cantilever spring in the vessel, wherein the electromagnet induces movement of the magnet and the cantilever spring in the vessel, and wherein the movement is related to the pressure of the fluid in the vessel; a receiving coil operatively positioned relative to the magnet, wherein movement of the cantilever spring and the magnet in the vessel creates an electromotive response in the coil; and a controller analyzer connected to the receiving coil, wherein the controller analyzer uses the electromotive response in the coil for measuring the pressure of the fluid in the vessel.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: August 15, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jack Kotovsky, Taylor Bevis
  • Publication number: 20220329048
    Abstract: The present disclosure relates to a laser diode system. The system may have at least one laser diode emitter having a substrate, at least one laser diode supported on the substrate, and a facet which a laser beam generated by the laser diode is emitted. A cooling subsystem is included which is disposed in contact with the substrate of the laser diode emitter. The cooling subsystem includes a plurality of cooling fins forming a plurality of elongated channels for circulating a cooling fluid therethrough to cool the laser diode emitter. The cooling fluid also flows over the facet of the laser diode emitter.
    Type: Application
    Filed: April 9, 2021
    Publication date: October 13, 2022
    Inventors: Jack KOTOVSKY, Salmaan H. BAXAMUSA, Clint D. FRYE, Ian Seth LADNER, Thomas M. SPINKA, Devin Joseph FUNARO, David Ryan HOBBY, Caleb Del ANDERSON, Todd BANDHAUER
  • Publication number: 20220011188
    Abstract: Measurement of pressure of a fluid in a vessel using a cantilever spring in the vessel; a magnet connected to the cantilever spring in the vessel; an electromagnet outside of the vessel operatively connected to the magnet and the cantilever spring in the vessel, wherein the electromagnet induces movement of the magnet and the cantilever spring in the vessel, and wherein the movement is related to the pressure of the fluid in the vessel; a receiving coil operatively positioned relative to the magnet, wherein movement of the cantilever spring and the magnet in the vessel creates an electromotive response in the coil; and a controller analyzer connected to the receiving coil, wherein the controller analyzer uses the electromotive response in the coil for measuring the pressure of the fluid in the vessel.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 13, 2022
    Inventors: Jack Kotovsky, Taylor Bevis
  • Patent number: 11162861
    Abstract: Measurement of pressure of a fluid in a vessel using a cantilever spring in the vessel; a magnet connected to the cantilever spring in the vessel; an electromagnet outside of the vessel operatively connected to the magnet and the cantilever spring in the vessel, wherein the electromagnet induces movement of the magnet and the cantilever spring in the vessel, and wherein the movement is related to the pressure of the fluid in the vessel; a receiving coil operatively positioned relative to the magnet, wherein movement of the cantilever spring and the magnet in the vessel creates an electromotive response in the coil; and a controller analyzer connected to the receiving coil, wherein the controller analyzer uses the electromotive response in the coil for measuring the pressure of the fluid in the vessel.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: November 2, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jack Kotovsky, Taylor Bevis
  • Publication number: 20210234214
    Abstract: The present disclosure relates to an energy module having a plurality of energy generating cells, and at least one cooling plate having opposing surfaces. The cooling plate is disposed between an adjacent pair of the energy generating cells such that the opposing surfaces of the cooling plate are in contact with surfaces of the adjacent pair of energy generating cells. The cooling plate has at least one coolant flow channel configured to receive a coolant flow therethrough to limit propagation of heat from one to the other of either one of the adjacent pair of energy generating cells when either one of the adjacent pair of energy generating cells fails.
    Type: Application
    Filed: May 2, 2019
    Publication date: July 29, 2021
    Applicants: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Frank PUGLIA, Ralph ROARK, Gregory J. MOORE, Arthur DOBLEY, Thomas J. MCCARVILLE, John CHANG, Jacquelyn N. ETTER, Jack KOTOVSKY, Rudy ROBLES, Eric M. ZIEBARTH
  • Publication number: 20200340877
    Abstract: Measurement of pressure of a fluid in a vessel using a cantilever spring in the vessel; a magnet connected to the cantilever spring in the vessel; an electromagnet outside of the vessel operatively connected to the magnet and the cantilever spring in the vessel, wherein the electromagnet induces movement of the magnet and the cantilever spring in the vessel, and wherein the movement is related to the pressure of the fluid in the vessel; a receiving coil operatively positioned relative to the magnet, wherein movement of the cantilever spring and the magnet in the vessel creates an electromotive response in the coil; and a controller analyzer connected to the receiving coil, wherein the controller analyzer uses the electromotive response in the coil for measuring the pressure of the fluid in the vessel.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 29, 2020
    Inventors: Jack Kotovsky, Taylor Bevis
  • Patent number: 9768584
    Abstract: A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: September 19, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Todd Bandhauer, Robert J. Deri, John W. Elmer, Jack Kotovsky, Susant Patra
  • Patent number: 9588058
    Abstract: Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: March 7, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mihail Bora, Jack Kotovsky
  • Publication number: 20160315445
    Abstract: A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.
    Type: Application
    Filed: March 24, 2016
    Publication date: October 27, 2016
    Inventors: Todd Bandhauer, Robert J. Deri, John W. Elmer, Jack Kotovsky, Susant Patra
  • Patent number: 8811445
    Abstract: A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: August 19, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Robert J. Deri, Diana Chen, Andy Bayramian, Barry Freitas, Jack Kotovsky
  • Patent number: 8715882
    Abstract: A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along some of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 6, 2014
    Assignee: Lawrene Livermore National Security, LLC.
    Inventors: David A. Sopchak, Jeffrey D. Morse, Ravindra S. Upadhye, Jack Kotovsky, Robert T. Graff
  • Patent number: 8646335
    Abstract: A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: February 11, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Jack Kotovsky
  • Patent number: 8342005
    Abstract: All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: January 1, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jack Kotovsky, William J. Benett, Angela C. Tooker, Jennifer B. Alameda
  • Patent number: 8208508
    Abstract: A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 26, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Robert J. Deri, Jack Kotovsky, Christopher M. Spadaccini
  • Patent number: 8208509
    Abstract: A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 26, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Robert J. Deri, Jack Kotovsky, Christopher M. Spadaccini
  • Publication number: 20120144924
    Abstract: A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.
    Type: Application
    Filed: January 12, 2012
    Publication date: June 14, 2012
    Applicant: Lawrence Livermore National Security, LLC
    Inventor: Jack Kotovsky
  • Patent number: 8199787
    Abstract: A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 12, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Robert J. Deri, Jack Kotovsky, Christopher M. Spadaccini
  • Patent number: 8109149
    Abstract: A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: February 7, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Jack Kotovsky
  • Publication number: 20110286482
    Abstract: A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Robert J. Deri, Jack Kotovsky, Christopher M. Spadaccini