Patents by Inventor Jack Kuo-Ping Kuo

Jack Kuo-Ping Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240071722
    Abstract: Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Sheng-Liang Pan, Bing-Hung Chen, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang, Jack Kuo-Ping Kuo
  • Patent number: 11854766
    Abstract: Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sheng-Liang Pan, Bing-Hung Chen, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang, Jack Kuo-Ping Kuo
  • Publication number: 20220359158
    Abstract: Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Sheng-Liang Pan, Bing-Hung Chen, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang, Jack Kuo-Ping Kuo
  • Patent number: 11404245
    Abstract: Embodiments described herein relate to plasma processes. A plasma process includes generating a plasma containing negatively charged oxygen ions. A substrate is exposed to the plasma. The substrate is disposed on a pedestal while being exposed to the plasma. While exposing the substrate to the plasma, a negative direct current (DC) bias voltage is applied to the pedestal to repel the negatively charged oxygen ions from the substrate.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sheng-Liang Pan, Bing-Hung Chen, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang, Jack Kuo-Ping Kuo
  • Patent number: 11121025
    Abstract: A method of manufacturing a semiconductor device includes etching a via through a dielectric layer and an etch stop layer (ESL) to a source/drain contact, forming a recess in the top surface of the source/drain contact such that the top surface of the source/drain contact is concave, and forming an oxide liner on the sidewalls of the via. The oxide liner traps impurities left behind by the etching of the via through the dielectric layer and the ESL, wherein the etching, the forming the recess, and the forming the oxide liner are performed in a first chamber. The method further includes performing a pre-cleaning that removes the oxide liner and depositing a metal in the via.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Chang Hsu, Sheng-Liang Pan, Huan-Just Lin, Jack Kuo-Ping Kuo
  • Publication number: 20200388504
    Abstract: A semiconductor structure includes a metal gate structure including a gate dielectric layer and a gate electrode, the gate electrode including at least a first metal; a conductive layer formed above the gate electrode, the conductive layer including an alloy layer, the alloy layer including at least the first metal and a second metal different from the first metal, the alloy layer extending from a position below a top surface of the metal gate structure to a position above the top surface of the metal gate structure; and a contact feature disposed above the metal gate structure, wherein the contact feature is in direct contact with a top surface of the conductive layer.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Patent number: 10755945
    Abstract: A method includes forming a metal gate structure, wherein the metal gate structure includes a gate dielectric layer and a gate electrode; performing a surface treatment to a top surface of the metal gate structure, wherein the surface treatment converts a top portion of the gate electrode to an oxidation layer; forming a conductive layer above the gate electrode, wherein the forming of the conductive layer includes substituting oxygen in the oxidation layer with a metallic element; and forming a contact feature above the metal gate structure, wherein the contact feature is in direct contact with the conductive layer.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: August 25, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Publication number: 20200105586
    Abstract: A method of manufacturing a semiconductor device includes etching a via through a dielectric layer and an etch stop layer (ESL) to a source/drain contact, forming a recess in the top surface of the source/drain contact such that the top surface of the source/drain contact is concave, and forming an oxide liner on the sidewalls of the via. The oxide liner traps impurities left behind by the etching of the via through the dielectric layer and the ESL, wherein the etching, the forming the recess, and the forming the oxide liner are performed in a first chamber. The method further includes performing a pre-cleaning that removes the oxide layer and depositing a metal in the via.
    Type: Application
    Filed: September 12, 2019
    Publication date: April 2, 2020
    Inventors: Yun-Chang Hsu, Sheng-Liang Pan, Huan-Just Lin, Jack Kuo-Ping Kuo
  • Publication number: 20200098588
    Abstract: An ashing process and device forms radicals of an ashing gas through a secondary reaction. A plasma is generated from a first gas, which is diffused through a first gas distribution plate (GDP). The plasma is diffused through a second GDP and a second gas is supplied below the second GDP. The first gas reacts with the second gas to energize the second gas. The energized second gas is used in ashing a resist layer from a substrate.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Inventors: Jack Kuo-Ping Kuo, Sheng-Liang Pan, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang
  • Publication number: 20200020541
    Abstract: A method includes forming a metal gate structure, wherein the metal gate structure includes a gate dielectric layer and a gate electrode; performing a surface treatment to a top surface of the metal gate structure, wherein the surface treatment converts a top portion of the gate electrode to an oxidation layer; forming a conductive layer above the gate electrode, wherein the forming of the conductive layer includes substituting oxygen in the oxidation layer with a metallic element; and forming a contact feature above the metal gate structure, wherein the contact feature is in direct contact with the conductive layer.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 16, 2020
    Inventors: Pang-Sheng Chang, Yu-Feng Yin, Chao-Hsun Wang, Kuo-Yi Chao, Fu-Kai Yang, Mei-Yun Wang, Feng-Yu Chang, Chen-Yuan Kao, Chia-Yang Hung, Chia-Sheng Chang, Shu-Huei Suen, Jyu-Horng Shieh, Sheng-Liang Pan, Jack Kuo-Ping Kuo, Shao-Jyun Wu
  • Patent number: 10510553
    Abstract: An ashing process and device forms radicals of an ashing gas through a secondary reaction. A plasma is generated from a first gas, which is diffused through a first gas distribution plate (GDP). The plasma is diffused through a second GDP and a second gas is supplied below the second GDP. The first gas reacts with the second gas to energize the second gas. The energized second gas is used in ashing a resist layer from a substrate.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jack Kuo-Ping Kuo, Sheng-Liang Pan, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang
  • Publication number: 20190371619
    Abstract: An ashing process and device forms radicals of an ashing gas through a secondary reaction. A plasma is generated from a first gas, which is diffused through a first gas distribution plate (GDP). The plasma is diffused through a second GDP and a second gas is supplied below the second GDP. The first gas reacts with the second gas to energize the second gas. The energized second gas is used in ashing a resist layer from a substrate.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Jack Kuo-Ping Kuo, Sheng-Liang Pan, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang
  • Publication number: 20190267211
    Abstract: Embodiments described herein relate to plasma processes. A tool includes a pedestal. The pedestal is configured to support a semiconductor substrate. The tool includes a bias source. The bias source is electrically coupled to the pedestal. The bias source is operable to bias the pedestal with a direct current (DC) voltage. The tool includes a plasma generator. The plasma generator is operable to generate a plasma remote from the pedestal. A method for semiconductor processing includes performing a plasma process on a substrate in a tool. The plasma process includes flowing a gas into the tool. The plasma process includes biasing a pedestal that supports the substrate in the tool. The plasma process includes igniting a plasma in the tool using the gas.
    Type: Application
    Filed: November 1, 2018
    Publication date: August 29, 2019
    Inventors: Sheng-Liang Pan, Bing-Hung Chen, Chia-Yang Hung, Jyu-Horng Shieh, Shu-Huei Suen, Syun-Ming Jang, Jack Kuo-Ping Kuo