Patents by Inventor Jack Lenell

Jack Lenell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220123710
    Abstract: Techniques for improving Bulk Acoustic Wave (BAW) resonator structures are disclosed, including filters, oscillators and systems that may include such devices. First and second layers of piezoelectric material may be acoustically coupled with one another to have a piezoelectrically excitable resonance mode. The first layer of piezoelectric material may have a first piezoelectric axis orientation, and the second layer of piezoelectric material may have a second piezoelectric axis orientation that opposes the first piezoelectric axis orientation of the first layer of piezoelectric material. A top acoustic reflector including a first pair of top metal electrode layers may be electrically and acoustically coupled with the first layer of piezoelectric material to excite the piezoelectrically excitable main resonance mode at a resonant frequency.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: DARIUSZ BURAK, KEVIN J. GRANNEN, JACK LENELL
  • Publication number: 20220123719
    Abstract: Techniques for improving acoustic wave device structures are disclosed, including filters and systems that may include such devices. An acoustic wave device may include a substrate. The acoustic wave device may include first and second layers of piezoelectric material acoustically coupled with one another, in which the first layer of piezoelectric material has a first piezoelectric axis orientation, and the second layer of piezoelectric material has a second piezoelectric axis orientation that substantially opposes the first piezoelectric axis orientation of the first layer of piezoelectric material. The acoustic wave device may include an interposer layer interposed between the first and second layers of piezoelectric material. The interposer may facilitate an enhancement of an electromechanical coupling coefficient of the acoustic wave device.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell
  • Publication number: 20220123729
    Abstract: Techniques for improving acoustic wave device structures are disclosed, including filters and systems that may include such devices. An apparatus may comprise a first electrical filter including an acoustic wave device. The first electrical may having a first filter band in a Super High Frequency (SHF) band or an Extremely High Frequency (EHF) band to facilitate compliance with a regulatory requirement or a standards setting organization specification. For example, the first electrical filter may comprise a notch filter having a notch band overlapping at least a portion of an Earth Exploration Satellite Service (EESS) band to facilitate compliance with a regulatory requirement or the standards setting organization specification for the Earth Exploration Satellite Service (EESS) band.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell
  • Publication number: 20220123709
    Abstract: Techniques for improving acoustic wave device structures are disclosed, including filters, oscillators and systems that may include such devices. First and second layers of piezoelectric material may be acoustically coupled with one another to have a piezoelectrically excitable resonance mode. The first layer of piezoelectric material may have a first piezoelectric axis orientation, and the second layer of piezoelectric material may have a second piezoelectric axis orientation that substantially opposes the first piezoelectric axis orientation of the first layer of piezoelectric material. The first and second layers of piezoelectric material have respective thicknesses so that the acoustic wave device has a resonant frequency that is in a super high frequency band or an extremely high frequency band.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell
  • Publication number: 20220123725
    Abstract: Techniques for improving Bulk Acoustic Wave (BAW) reflector and resonator structures are disclosed, including filters, oscillators and systems that may include such devices. First and second layers of piezoelectric material may be acoustically coupled with one another to have a piezoelectrically excitable resonance mode. The first layer of piezoelectric material may have a first piezoelectric axis orientation, and the second layer of piezoelectric material may have a second piezoelectric axis orientation that substantially opposes the first piezoelectric axis orientation of the first layer of piezoelectric material. A top acoustic reflector electrode may include a first pair of top metal electrode layers electrically and acoustically coupled with the first and second layer of piezoelectric material to excite the piezoelectrically excitable resonance mode at a resonant frequency of the BAW resonator.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell
  • Publication number: 20210351759
    Abstract: Techniques for improving Bulk Acoustic Wave (BAW) resonator structures are disclosed, including fluidic systems, oscillators and systems that may include such devices. A bulk acoustic wave (BAW) resonator may comprise a substrate and a first layer of piezoelectric material. The bulk acoustic wave (BAW) resonator may comprise a top electrode. A sensing region may be acoustically coupled with the top electrode of the bulk acoustic wave (BAW) resonator.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell
  • Patent number: 11101783
    Abstract: Techniques for improving Bulk Acoustic Wave (BAW) resonator structures are disclosed, including fluidic systems, oscillators and systems that may include such devices. A bulk acoustic wave (BAW) resonator may comprise a substrate and a first layer of piezoelectric material. The bulk acoustic wave (BAW) resonator may comprise a top electrode. A sensing region may be acoustically coupled with the top electrode of the bulk acoustic wave (BAW) resonator.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: August 24, 2021
    Assignee: QXONIX INC.
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell
  • Publication number: 20210036678
    Abstract: Techniques for improving Bulk Acoustic Wave (BAW) resonator structures are disclosed, including fluidic systems, oscillators and systems that may include such devices. A bulk acoustic wave (BAW) resonator may comprise a substrate and a first layer of piezoelectric material. The bulk acoustic wave (BAW) resonator may comprise a top electrode. A sensing region may be acoustically coupled with the top electrode of the bulk acoustic wave (BAW) resonator.
    Type: Application
    Filed: July 27, 2020
    Publication date: February 4, 2021
    Inventors: Dariusz Burak, Kevin J. Grannen, Jack Lenell