Patents by Inventor Jack Pryor

Jack Pryor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200100715
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: November 21, 2019
    Publication date: April 2, 2020
    Applicant: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker
  • Patent number: 10598627
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: March 24, 2020
    Assignee: DexCom, Inc.
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Bohm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Patent number: 10595900
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing. Systems and methods according to present principles allow for such steps to occur without significant loss of spring force, and without deleterious effects such as seal slingshotting.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: March 24, 2020
    Assignee: DexCom, Inc.
    Inventors: Ryan Everett Schoonmaker, Jennifer Blackwell, Christopher M. Davis, David DeRenzy, Eric Gobrecht, Jason Halac, Jonathan Hughes, Kathleen Suzanne Hurst, Randall Scott Koplin, Phong Lieu, Kyle Neuser, Todd Andrew Newhouse, Jack Pryor, Peter C. Simpson, Maria Noel Brown Wells, Justen Deering England, Stefanie Lynn Mah, Leonard Darius Barbod, Jillian K. Allen, Michael J. Estes, Philip Thomas Pupa, Timothy Joseph Goldsmith, Kyle Tinnell Keller
  • Publication number: 20200085355
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Applicant: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker
  • Publication number: 20200085354
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Applicant: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker
  • Publication number: 20200085356
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker
  • Publication number: 20200037875
    Abstract: Systems and methods of use involving sensors having a signal-to-noise ratio that is substantially unaffected by non-constant noise are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Inventors: Peter C. Simpson, Robert J. Boock, Mark C. Brister, Monica A. Rixman, Kum Ming Woo, Lisa Nguyen, Seth R. Brunner, Arthur Chee, Melissa A. Nicholas, Matthew D. Wightlin, Jack Pryor, Dubravka Markovic
  • Publication number: 20200037874
    Abstract: Systems and methods of use involving sensors having a signal-to-noise ratio that is substantially unaffected by non-constant noise are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Inventors: Peter C. Simpson, Robert J. Boock, Mark C. Brister, Monica A. Rixman, Kum Ming Woo, Lisa Nguyen, Seth R. Brunner, Arthur Chee, Melissa A. Nicholas, Matthew D. Wightlin, Jack Pryor, Dubravka Markovic
  • Patent number: 10537678
    Abstract: Methods and systems for encouraging interactions with a glucose monitoring system include incrementing a score and/or providing a reward based on a variety of different interactions with the glucose monitoring system. The interactions which improve the score may include initiating or changing displays, downloading data, setting operational parameters and other interactions that are independent of a user's glucose measurements. Encouraging these interactions can enhance success in maintaining healthy glucose concentrations.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 21, 2020
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Jack Pryor, Alexandra Lynn Carlton, Kristin Koenekamp Cote, Leif N. Bowman, Michael Robert Mensinger
  • Publication number: 20190374104
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 12, 2019
    Inventors: Mark C. Brister, Jack Pryor, John Nolting, Jacob S. Leach, Luis Pestana, Nelson Quintana, Vance Swanson, Paul V. Goode, JR., James Patrick Thrower
  • Publication number: 20190365227
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Mark C. Brister, Jack Pryor, John Nolting, Jacob S. Leach, Luis Pestana, Nelson Quintana, Vance Swanson, Paul V. Goode, JR., James Patrick Thrower
  • Publication number: 20190357818
    Abstract: The present embodiments relate generally to systems and methods for measuring an analyte in a host. More particularly, the present embodiments provide sensor applicators and methods of use with pushbutton activation that implant the sensor, withdraw the insertion needle, engage the transmitter with the housing, and disengage the applicator from the housing, all in one smooth motion. Some embodiments contemplate engagement of the transmitter with the housing after release of the applicator.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Inventors: Jack Pryor, Sebastian Böhm, David DeRenzy, Jason Halac, Daniel S. Kline, Phong Lieu, Adam J. Livingston, Steve Masterson, Paul V. Neale, Peter C. Simpson, Antonio Joao Ubach
  • Publication number: 20190357822
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 28, 2019
    Applicant: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker
  • Publication number: 20190350503
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Applicant: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker
  • Publication number: 20190350502
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Publication number: 20190350504
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 21, 2019
    Applicant: DexCom, Inc.
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker
  • Patent number: 10483000
    Abstract: Methods, systems, and devices are disclosed for administering a medicament to a patient. In one aspect, a system includes an injection pen device in wireless communication with a mobile communication device. The injection pen device includes a housing including a chamber to encase a cartridge containing medicine, a dose setting and dispensing mechanism to set the mechanism to dispense a particular dose of the medicine from the loaded cartridge, a sensor unit to detect a dispensed dose based on positions and/or movements of the dose setting and dispensing mechanism, and an electronics unit in communication with the sensor unit to process the detected dispensed dose and time data associated with a dispensing event and to wirelessly transmit the dose data to a user's device. The mobile communication device provides a software application to provide the user with health information using the processed dose data.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: November 19, 2019
    Assignee: Companion Medical, Inc.
    Inventors: Sean Saint, Arnold Holmquist, Cory McCluskey, Jack Pryor, Jasper Benke
  • Publication number: 20190343436
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: July 5, 2019
    Publication date: November 14, 2019
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker
  • Publication number: 20190335997
    Abstract: Systems and methods of use involving sensors having a signal-to-noise ratio that is substantially unaffected by non-constant noise are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Application
    Filed: June 26, 2019
    Publication date: November 7, 2019
    Inventors: Peter C. Simpson, Robert J. Boock, Mark C. Brister, Monica A. Rixman, Kum Ming Woo, Lisa Nguyen, Seth R. Brunner, Arthur Chee, Melissa A. Nicholas, Matthew D. Wightlin, Jack Pryor, Dubravka Markovic
  • Publication number: 20190320952
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Jack Pryor, Apurv Ullas Kamath, Paul V. Goode, JR., James H. Brauker