Patents by Inventor Jack T. Lestrange

Jack T. Lestrange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11498354
    Abstract: A multilayer imaging blanket for a variable data lithography system, including a multilayer base including a sulfur-containing layer; and a cured topcoat layer including a polyurethane in contact with the sulfur-containing layer of the multilayer base.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: November 15, 2022
    Assignee: XEROX CORPORATION
    Inventors: Varun Sambhy, Peter J. Knausdorf, Ngoc-Tram Le, Santokh S. Badesha, Jack T. LeStrange
  • Patent number: 11491732
    Abstract: A three-dimensional object printer comprises a platen, a gantry positioned above the platen, an ejector head positioned on the gantry, a sensor, and a controller. The controller is configured to operate the ejector to eject at least one drop of material toward the platen at an upper build level and determine process and cross-process differentials between a fiducial and the at least one drop of material deposited on the upper build surface. The controller is also configured to determine an ejector head shift in a process direction and a cross-process direction associated with each of the plurality of build levels based at least in part on the determined process and cross-process differentials and a number of build levels between the base build level and the upper build level.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: November 8, 2022
    Assignee: Xerox Corporation
    Inventors: Jack T. LeStrange, Alex S. Brougham, Matthew R. McLaughlin, James L. Giacobbi, Victoria L. Warner
  • Patent number: 11491806
    Abstract: A print system and a method for confirming complete curing of a marking material are disclosed. For example, the print system includes a plurality of printheads arranged in a two-dimensional array, a curing light source, a curing confirmation system, a movable member to hold an object and a controller to control movement of the movable member to move the object past the array of printheads, to operate the plurality of printheads to eject the marking material onto the object as the object passes the two-dimensional array of printheads, to operate the curing light source to cure the marking material and to operate the curing confirmation system to confirm that the curing of the marking material is complete.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: November 8, 2022
    Assignee: Xerox Corporation
    Inventors: Anthony S. Condello, Jack T. LeStrange, Peter J. Knausdorf, Mandakini Kanungo, Xin Yang
  • Publication number: 20220314647
    Abstract: A printing system comprises an ink deposition assembly, a media transport device, and an airflow control system. The ink deposition assembly comprises a printhead to eject ink through a carrier plate opening in a carrier plate. The media transport device holds a print medium against a movable support surface by vacuum suction and transports the print media through a deposition region. The airflow control system comprises a baffle that is movable between an upstream-blocking configuration and a downstream-blocking configuration, and an actuator configured to move the baffle. In the upstream-blocking configuration the baffle blocks airflow through an upstream side of the printhead opening while allowing airflow through a downstream side of the printhead opening. In the downstream-blocking configuration the baffle blocks airflow through the downstream side of the printhead opening while allowing airflow through the upstream side of the printhead opening.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Applicant: XEROX CORPORATION
    Inventors: Peter John KNAUSDORF, Anthony Salvatore CONDELLO, Jack T. LESTRANGE, Palghat S. RAMESH, Joseph C. SHEFLIN
  • Publication number: 20220314651
    Abstract: A printing system comprises an ink deposition assembly and a media transport device. The ink deposition assembly comprises printheads to deposit a print fluid, such as ink, on print media, such as paper. The media transport device holds the print media against a movable support surface, such as a belt, by vacuum suction platen and transports the print media though a deposition region. The vacuum suction is communicated to the movable through platen holes and platen channels in a vacuum platen. At least some of the platen channels have a high impedance region that has a reduced open cross-sectional area as compared to another region of the platen channel.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Applicant: XEROX CORPORATION
    Inventors: Anthony Salvatore CONDELLO, Peter John KNAUSDORF, Jack T. LESTRANGE, Palghat S. RAMESH, Joseph C. SHEFLIN
  • Publication number: 20220305819
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Patrick Jun HOWE, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Douglas K. HERRMANN, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Joseph C. SHEFLIN, Emmett James SPENCE, Robert Jian ZHANG, Megan ZIELENSKI
  • Publication number: 20220305806
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising an airflow guide structure extending into the opening of the carrier plate, the airflow guide structure configured to flow air at a direction aimed under the printhead and at an oblique angle relative to the movable support surface. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Joseph C. SHEFLIN, Anthony Salvatore CONDELLO, Peter John KNAUSDORF, Jack T. LESTRANGE, Palghat S. RAMESH
  • Publication number: 20220305815
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Douglas K. HERRMANN, Linn C. HOOVER, Patrick Jun HOWE, Joseph C. SHEFLIN, Robert Jian ZHANG, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Erwin RUIZ, Emmett James SPENCE, Rachel Lynn TANCHAK, Kareem TAWIL, Carlos M. TERRERO, Megan ZIELENSKI
  • Publication number: 20220266273
    Abstract: A powder coating spray gun reservoir assembly, including a first section including a first end, a second end, and a first lateral wall extending between the first end and the second end, a second section including a third end engaged with the second end, a fourth end, and a second lateral wall extending between the third end and the fourth end, a screen removably arranged between the first section and the second section, and an agitator rotatably arranged in the first section, wherein the agitator is operatively arranged to rotate relative to the screen to displace powder from the first section to the second section.
    Type: Application
    Filed: February 19, 2021
    Publication date: August 25, 2022
    Inventors: Jack T. LeStrange, Anthony Salvatore Condello, Palghat S. Ramesh, Joseph Charles Sheflin, Peter John Knausdorf
  • Publication number: 20220258464
    Abstract: A drag force sensor on a fountain solution carrier roller surface measures drag force of a fountain solution layer on the fountain solution carrier roller surface in real-time during a printing operation. The measured drag force is used in a feedback loop to actively control the fountain solution layer thickness by adjusting the volumetric feed rate of fountain solution added onto the imaging member surface during a printing operation to reach a desired uniform thickness for the printing. This fountain solution monitoring system may be fully automated.
    Type: Application
    Filed: February 17, 2021
    Publication date: August 18, 2022
    Inventors: Jack T. LESTRANGE, Joseph C. SHEFLIN, Palghat S. RAMESH, Anthony S. CONDELLO, Brian M. BALTHASAR, Seemit PRAHARAJ, Chu-heng LIU, Paul J. MCCONVILLE, Douglas K. HERRMANN, Jason M. LEFEVRE
  • Publication number: 20220219445
    Abstract: An optical gloss meter above an imaging member surface measures fountain solution surface gloss on the imaging member surface in real-time during a printing operation. The measured gloss corresponds to a thickness of the fountain solution layer and may be used in a feedback loop to actively control fountain solution layer thickness by adjusting the volumetric feed rate of fountain solution added onto the imaging member surface during a printing operation to reach a desired uniform thickness for the printing. This fountain solution monitoring system may be fully automated.
    Type: Application
    Filed: January 14, 2021
    Publication date: July 14, 2022
    Inventors: Anthony S. CONDELLO, Jack T. LESTRANGE, Joseph C. SHEFLIN, Brian M. BALTHASAR, Palghat S. RAMESH
  • Patent number: 11376840
    Abstract: Examples of the preferred embodiments use printed content (e.g., halftones, difference in grayscale or darkness) to determine thickness of fountain solution applied by a fountain solution applicator on an imaging member surface and/or determine image forming device real-time image forming modifications for subsequent printings. For example, in real-time during the printing of a print job, a sensor may measure halftones or grayscale differences between printed content and non-printed content of a current printing on print substrate. Based on this measurement of printed content output from the image forming device, the image forming device may adjust image forming (e.g., fountain solution deposition flow rate, imaging member rotation speed) to reach or maintain a preferred fountain solution thickness on the imaging member surface for subsequent (e.g., next) printings of the print job.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: July 5, 2022
    Assignee: Xerox Corporation
    Inventors: Joseph C. Sheflin, Jack T. Lestrange, Anthony S. Condello, Palghat S. Ramesh, Brian M. Balthasar
  • Patent number: 11298964
    Abstract: Provided herein is an imaging blanket for variable data lithography comprising (i) a substrate and (ii) a thermally-conductive composition disposed on the substrate comprising a silicone elastomer and a thermally-conductive filler selected from metal oxides, wherein the thermally-conductive composition has a thermal conductivity ranging from about 0.6 W/m2 to about 1.6 W/m2. Further provided herein a method of making the imaging blanket, as well as a printing system comprising the imaging blanket, wherein the imaging blanket has improved thermal conductivity.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: April 12, 2022
    Assignee: XEROX CORPORATION
    Inventors: Varun Sambhy, Joseph Sheflin, Peter Knausdorf, Mark C. Petropoulos, Jack T. LeStrange, Santokh S. Badesha
  • Publication number: 20220063317
    Abstract: A multilayer imaging blanket for a variable data lithography system, including a multilayer base including a sulfur-containing layer; and a cured topcoat layer including a polyurethane in contact with the sulfur-containing layer of the multilayer base.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 3, 2022
    Applicant: XEROX CORPORATION
    Inventors: Varun Sambhy, Peter J. Knausdorf, Ngoc-Tram Le, Santokh S. Badesha, Jack T. LeStrange
  • Patent number: 11230135
    Abstract: The present disclosure is directed to a multilayer imaging blanket for a variable data lithography printing system, including: a multilayer base having a lower contacting surface configured to wrap around or to be mounted on a cylinder core of the variable data lithography printing system; and a platinum catalyzed fluorosilicone surface layer opposite the lower contacting surface; wherein the multilayer base is a sulfur-free carcass including: a top layer including a sulfur-free rubber substrate such as an ethylene propylene diene monomer (EPDM) rubber substrate, a bottom layer including the lower contacting surface; and a compressible layer disposed between the top layer and the bottom layer, the compressible layer being attached to a surface of the top layer opposite the platinum catalyzed fluorosilicone surface layer and a surface of the bottom layer opposite the lower contacting surface, optionally the top layer further comprises a reinforcing fabric layer, the reinforcing fabric layer attached to a surfa
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: January 25, 2022
    Assignee: XEROX CORPORATION
    Inventors: Varun Sambhy, Lin Ma, Kyle B. Tallman, Santokh S. Badesha, Michael S. Roetker, Mark C. Petropoulos, Jack T. LeStrange, Joseph C. Sheflin, Peter J. Knausdorf, Jorge A. Alvarez
  • Publication number: 20210402754
    Abstract: Examples of the preferred embodiments use printed content (e.g., halftones, difference in grayscale or darkness) to determine thickness of fountain solution applied by a fountain solution applicator on an imaging member surface and/or determine image forming device real-time image forming modifications for subsequent printings. For example, in real-time during the printing of a print job, a sensor may measure halftones or grayscale differences between printed content and non-printed content of a current printing on print substrate. Based on this measurement of printed content output from the image forming device, the image forming device may adjust image forming (e.g., fountain solution deposition flow rate, imaging member rotation speed) to reach or maintain a preferred fountain solution thickness on the imaging member surface for subsequent (e.g., next) printings of the print job.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Joseph C. SHEFLIN, Jack T. LESTRANGE, Anthony S. CONDELLO, Palghat S. RAMESH, Brian M. BALTHASAR
  • Patent number: 11148414
    Abstract: An image based correction system compensates for the image quality artifacts induced by thermal ghosting. With thermal ghosting directly tied to previous image content, a feed forward control system predicts the thermal ghosting artifact based on the images previous printed and generates an open loop, 2-D correction to the gray-level image that mitigates the undesirable ghosting artifacts. For example, the correction system compensates for the thermal ghosting by making the current digital image “lighter” in areas that will be imaged onto warmer blanket regions, thereby cancelling out TRC differences between different temperature regions.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: October 19, 2021
    Assignee: Xerox Corporation
    Inventors: Jack T. Lestrange, Palghat S. Ramesh, Joseph C. Sheflin
  • Publication number: 20210276268
    Abstract: A three-dimensional object printer comprises a platen, a gantry positioned above the platen, an ejector head positioned on the gantry, a sensor, and a controller. The controller is configured to operate the ejector to eject at least one drop of material toward the platen at an upper build level and determine process and cross-process differentials between a fiducial and the at least one drop of material deposited on the upper build surface. The controller is also configured to determine an ejector head shift in a process direction and a cross-process direction associated with each of the plurality of build levels based at least in part on the determined process and cross-process differentials and a number of build levels between the base build level and the upper build level.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 9, 2021
    Inventors: Jack T. LeStrange, Alex S. Brougham, Matthew R. McLaughlin, James L. Giacobbi, Victoria L. Warner
  • Patent number: 11001081
    Abstract: Backing material is passed by a first heater to pre-heat the backing material. The backing material is then passed by a printing engine to print marking material on the backing material, and passed by a first light source to apply ultra-violet (UV) light to the marking material printed on the backing material, to partially cure the marking material. Further, the backing material is passed by a container to expose the partially cured marking material to adhesive particles to cause the adhesive particles to adhere only to the marking material. The backing material is passed by a second light source to apply additional UV light to the marking material partially cured on the backing material to fully cure the marking material. Finally, the backing material is passed by a second heater to melt the adhesive particles that are adhered to the marking material on the backing material.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: May 11, 2021
    Assignee: Xerox Corporation
    Inventors: Anthony S. Condello, Jack T. Lestrange
  • Patent number: 10946686
    Abstract: An intermediate roller positioned between a fountain solution vapor supply and an imaging member decouples fountain solution vapor deposition from the surface of the imaging member. The intermediate roller may be temperature controlled. A uniform layer of fountain solution condenses onto the surface of the temperature controlled intermediate roller regardless of the imaging blanket temperature. The fountain solution condensate layer deposited onto the intermediate roller splits and deposits a thin uniform layer of fountain solution liquid onto the imaging member surface. This liquid layer split may be independent of the temperature of the imaging member surface, resulting in a uniform layer of fountain solution on the imaging blanket for better imaging quality. Remotely locating the vaporizing chamber away from the imaging member prevents undesired heat transfer from a hot vaporizing chamber/baffle to the imaging member surface.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 16, 2021
    Assignee: Xerox Corporation
    Inventors: Jack T. LeStrange, Peter J. Knausdorf, Joseph C. Sheflin