Patents by Inventor Jackson T. Lewis

Jackson T. Lewis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10532130
    Abstract: Provided herein is a soft tissue mimetic formed from a block copolymer hydrogel and methods of making such. The hydrogel comprises a glass formed from a dry blend of polystyrene-poly(ethylene oxide) diblock copolymer (SO) and polystyrene-poly(ethylene oxide)-polystyrene triblock copolymer (SOS) in a molar ratio from between 95:5 and 1:99 SO/SOS and a liquid medium at a concentration between about 32:1 and about 2:1 liquid medium/SO-SOS by weight. The soft tissue mimetic has a fatigue resistance to at least 500,000 compression cycles.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: January 14, 2020
    Assignee: Colorado State University Research Foundation
    Inventors: Travis S. Bailey, Kristine Fischenich, Jackson T. Lewis, Tammy Haut Donahue, Chen Guo
  • Patent number: 10428185
    Abstract: Provided herein is a block copolymer hydrogel, comprising a glass formed from a dry blend of polystyrene-poly(ethylene oxide) diblock copolymer (SO) and polystyrene-poly(ethylene oxide)-polystyrene triblock copolymer (SOS) in a molar ratio from between 95:5 and 1:99 SO/SOS and a liquid medium at a concentration between about 32:1 and about 2:1 liquid medium/SO—SOS by weight. The block copolymer hydrogel has a fatigue resistance to at least 500,000 compression cycles. Also provided are methods for forming the hydrogel.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: October 1, 2019
    Assignees: Colorado State University Research Foundation, The Regents of the University of Colorado, a Body Corporate
    Inventors: Travis S. Bailey, Chen Guo, Jackson T. Lewis, Kristine Fischenich, Tammy Haut Donahue, Dilanji Wijayasekara, Matthew G. Cowan, Douglas L. Gin, Richard D. Noble
  • Publication number: 20190151511
    Abstract: Provided herein is a soft tissue mimetic formed from a block copolymer hydrogel and methods of making such. The hydrogel comprises a glass formed from a dry blend of polystyrene-poly(ethylene oxide) diblock copolymer (SO) and polystyrene-poly(ethylene oxide)-polystyrene triblock copolymer (SOS) in a molar ratio from between 95:5 and 1:99 SO/SOS and a liquid medium at a concentration between about 32:1 and about 2:1 liquid medium/SO-SOS by weight. The soft tissue mimetic has a fatigue resistance to at least 500,000 compression cycles.
    Type: Application
    Filed: December 5, 2016
    Publication date: May 23, 2019
    Applicant: Colorado State University Research Foundation
    Inventors: Travis S. Bailey, Kristine Fischenich, Jackson T. Lewis, Tammy Haut Donahue, Chen Guo
  • Publication number: 20190031835
    Abstract: Provided herein is a block copolymer hydrogel, comprising a glass formed from a dry blend of polystyrene-poly(ethylene oxide) diblock copolymer (SO) and polystyrene-poly(ethylene oxide)-polystyrene triblock copolymer (SOS) in a molar ratio from between 95:5 and 1:99 SO/SOS and a liquid medium at a concentration between about 32:1 and about 2:1 liquid medium/SO—SOS by weight. The block copolymer hydrogel has a fatigue resistance to at least 500,000 compression cycles. Also provided are methods for forming the hydrogel.
    Type: Application
    Filed: December 5, 2016
    Publication date: January 31, 2019
    Applicants: Colorado State University Research Foundation, The Regents of the University of Colorado, a Body Corporate
    Inventors: Travis S. Bailey, Chen Guo, Jackson T. Lewis, Kristine Fischenich, Tammy Haut Donahue, Dilanji Wijayasekara, Matthew G. Cowan, Douglas L. Gin, Richard D. Noble
  • Patent number: 10167387
    Abstract: Provided herein is a polymeric material comprising a polymer host; and a guest molecule comprising a glycosaminoglycan; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. In some embodiments, the polymer host comprises a silicone-based polymer. In other embodiments, the glycosaminoglycan is chosen from hyaluronic acid and derivatives thereof.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: January 1, 2019
    Assignee: Colorado State University Research Foundation
    Inventors: Susan P. James, Travis S. Bailey, Ketul C. Popat, David A. Prawel, Jackson T. Lewis, Richard L. Koch
  • Publication number: 20160222203
    Abstract: Provided herein is a polymeric material comprising a polymer host; and a guest molecule comprising a glycosaminoglycan; wherein the guest molecule is disposed within the polymer host, and wherein the guest molecule is covalently bonded to at least one other guest molecule. In some embodiments, the polymer host comprises a silicone-based polymer. In other embodiments, the glycosaminoglycan is chosen from hyaluronic acid and derivatives thereof.
    Type: Application
    Filed: September 10, 2014
    Publication date: August 4, 2016
    Applicant: Colorado State University Research Foundation
    Inventors: Susan P. James, Travis S. Bailey, Ketul C. Popat, David A. Prawel, Jackson T. Lewis, Richard L. Koch