Patents by Inventor Jacob Antunes

Jacob Antunes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11798179
    Abstract: The present disclosure, in some embodiments, relates to a non-transitory computer-readable medium storing computer-executable instructions. The computer readable medium is configured to cause a processor to access an image volume of a rectum comprising a rectal tumor. A forward mapping is generated based on non-rigidly registering a healthy rectal atlas to the image volume. The forward mapping is inverted to generate an inverse mapping from the image volume to the healthy rectal atlas. Based on the inverse mapping, a plurality of deformation vectors, associated with a deformation within a rectal wall of the rectum, are determined. Magnitude based deformation features and orientation based deformation features are computed from the plurality of deformation vectors. One or more of the magnitude based deformation features and one or more of the orientation based deformation features are utilized to determine a response of a patient to a chemoradiation treatment.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: October 24, 2023
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Jacob Antunes, Zhouping Wei, Pallavi Tiwari, Satish E. Viswanath, Charlems Alvarez Jimenez
  • Publication number: 20220012902
    Abstract: The present disclosure, in some embodiments, relates to a non-transitory computer-readable medium storing computer-executable instructions. The computer readable medium is configured to cause a processor to access an image volume of a rectum comprising a rectal tumor. A forward mapping is generated based on non-rigidly registering a healthy rectal atlas to the image volume. The forward mapping is inverted to generate an inverse mapping from the image volume to the healthy rectal atlas. Based on the inverse mapping, a plurality of deformation vectors, associated with a deformation within a rectal wall of the rectum, are determined. Magnitude based deformation features and orientation based deformation features are computed from the plurality of deformation vectors. One or more of the magnitude based deformation features and one or more of the orientation based deformation features are utilized to determine a response of a patient to a chemoradiation treatment.
    Type: Application
    Filed: September 22, 2021
    Publication date: January 13, 2022
    Inventors: Anant Madabhushi, Jacob Antunes, Zhouping Wei, Pallavi Tiwari, Satish E. Viswanath, Charlems Alvarez Jimenez
  • Patent number: 11158051
    Abstract: Embodiments discussed herein facilitate determination of responsiveness to chemoradiation treatment in rectal cancer patients based on structural deformation features obtained from a pre- or post-treatment medical imaging. One example embodiment can perform operations comprising: accessing an image volume of a rectum comprising a rectal tumor; generating a forward mapping based on non-rigidly registering a healthy rectal atlas to the image volume; inverting the forward mapping to generate an inverse mapping from the image volume to the healthy rectal atlas; determining, based on the inverse mapping, an associated deformation magnitude for each voxel of a plurality of voxels associated with the rectum; computing one or more structural deformation features based on the associated deformation magnitudes for the plurality of voxels; and predicting via a classifier whether or not the rectal tumor will respond to the chemoradiation treatment based at least in part on the one or more structural deformation features.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: October 26, 2021
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Jacob Antunes, Zhouping Wei, Pallavi Tiwari, Satish E. Viswanath
  • Publication number: 20210027468
    Abstract: Embodiments discussed herein facilitate determination of responsiveness to chemoradiation treatment in rectal cancer patients based on structural deformation features obtained from a pre- or post-treatment medical imaging. One example embodiment can perform operations comprising: accessing an image volume of a rectum comprising a rectal tumor; generating a forward mapping based on non-rigidly registering a healthy rectal atlas to the image volume; inverting the forward mapping to generate an inverse mapping from the image volume to the healthy rectal atlas; determining, based on the inverse mapping, an associated deformation magnitude for each voxel of a plurality of voxels associated with the rectum; computing one or more structural deformation features based on the associated deformation magnitudes for the plurality of voxels; and predicting via a classifier whether or not the rectal tumor will respond to the chemoradiation treatment based at least in part on the one or more structural deformation features.
    Type: Application
    Filed: May 26, 2020
    Publication date: January 28, 2021
    Inventors: Anant Madabhushi, Jacob Antunes, Zhouping Wei, Pallavi Tiwari, Satish E. Viswanath
  • Patent number: 10692607
    Abstract: Methods and apparatus associated with predicting colorectal cancer tumor invasiveness are described. One example apparatus includes a set of circuits, and a data store that stores radiological images of tissue demonstrating colorectal cancer. The set of circuits includes a circumferential resection margin (CRM) prediction circuit that generates a CRM probability score for a diagnostic radiological image, an image acquisition circuit that acquires a diagnostic radiological image of a region of tissue demonstrating colorectal cancer pathology and that provides the diagnostic radiological image to the CRM prediction circuit, and a training circuit that trains the CRM prediction circuit to quantify chemoradiation response in the region of tissue represented in the diagnostic radiological image. The training circuit trains the CRM prediction circuit using a set of composite images.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: June 23, 2020
    Assignee: Case Western Reserve University
    Inventors: Satish Viswanath, Anant Madabhushi, Jacob Antunes
  • Patent number: 10650515
    Abstract: Embodiments access an image of a region of interest (ROI) demonstrating cancerous pathology; extract radiomic features from the ROI; define a radiomic feature expression scene based on the ROI and radiomic features; generate a cluster map by superpixel clustering the expression scene; generate an expression map by repartitioning the cluster map into expression levels; compute a textural and spatial phenotypes for the expression map based on the expression levels; construct a radiomic spatial textural (RADISTAT) descriptor by concatenating the textural and spatial phenotypes; provide the RADISTAT descriptor to a machine learning classifier; receive, from the machine learning classifier, a first probability that the ROI is a responder or non-responder, or a second probability that the ROI will experience long-term survival or short-term survival, based, at least in part, on the RADISTAT descriptor; and generate a classification of the ROI as a responder or non-responder, or long-term survivor or short-term surv
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: May 12, 2020
    Assignee: Case Western Reserve University
    Inventors: Anant Madabhushi, Satish Viswanath, Jacob Antunes, Pallavi Tiwari
  • Publication number: 20180342058
    Abstract: Embodiments access an image of a region of interest (ROI) demonstrating cancerous pathology; extract radiomic features from the ROI; define a radiomic feature expression scene based on the ROI and radiomic features; generate a cluster map by superpixel clustering the expression scene; generate an expression map by repartitioning the cluster map into expression levels; compute a textural and spatial phenotypes for the expression map based on the expression levels; construct a radiomic spatial textural (RADISTAT) descriptor by concatenating the textural and spatial phenotypes; provide the RADISTAT descriptor to a machine learning classifier; receive, from the machine learning classifier, a first probability that the ROI is a responder or non-responder, or a second probability that the ROI will experience long-term survival or short-term survival, based, at least in part, on the RADISTAT descriptor; and generate a classification of the ROI as a responder or non-responder, or long-term survivor or short-term surv
    Type: Application
    Filed: May 23, 2018
    Publication date: November 29, 2018
    Inventors: Anant Madabhushi, Satish Viswanath, Jacob Antunes, Pallavi Tiwari
  • Publication number: 20170053090
    Abstract: Methods and apparatus associated with predicting colorectal cancer tumor invasiveness are described. One example apparatus includes a set of circuits, and a data store that stores radiological images of tissue demonstrating colorectal cancer. The set of circuits includes a circumferential resection margin (CRM) prediction circuit that generates a CRM probability score for a diagnostic radiological image, an image acquisition circuit that acquires a diagnostic radiological image of a region of tissue demonstrating colorectal cancer pathology and that provides the diagnostic radiological image to the CRM prediction circuit, and a training circuit that trains the CRM prediction circuit to quantify chemoradiation response in the region of tissue represented in the diagnostic radiological image. The training circuit trains the CRM prediction circuit using a set of composite images.
    Type: Application
    Filed: March 21, 2016
    Publication date: February 23, 2017
    Inventors: Satish Viswanath, Anant Madabhushi, Jacob Antunes