Patents by Inventor Jacob C. Mower

Jacob C. Mower has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10619993
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: April 14, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacob C. Mower, Nicholas C. Harris, Dirk Englund, Greg Steinbrecher
  • Publication number: 20190310070
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Application
    Filed: June 6, 2019
    Publication date: October 10, 2019
    Inventors: JACOB C. MOWER, Nicholas C. HARRIS, DIRK ENGLUND, GREG STEINBRECHER
  • Patent number: 10359272
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: July 23, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Jacob C. Mower, Nicholas C. Harris, Dirk R. Englund, Greg Steinbrecher
  • Patent number: 10126506
    Abstract: A large-scale tunable-coupling ring array includes an input waveguide coupled to multiple ring resonators, each of which has a distinct resonant wavelength. The collective effect of these multiple ring resonators is to impart a distinct time delay to a distinct wavelength component (or frequency component) in an input signal, thereby carrying out quantum scrambling of the input signal. The scrambled signal is received by a receiver also using a large-scale tunable-coupling ring array. This receiver-end ring resonator array recovers the input signal by imparting a compensatory time delay to each wavelength component. Each ring resonator can be coupled to the input waveguide via a corresponding Mach Zehnder interferometer (MZI). The MZI includes a phase shifter on at least one of its arms to increase the tunability of the ring array.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: November 13, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacob C. Mower, Jelena Notaros, Mikkel Heuck, Dirk Robert Englund, Cosmo Lupo, Seth Lloyd
  • Publication number: 20180274900
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Application
    Filed: September 26, 2017
    Publication date: September 27, 2018
    Inventors: Jacob C. Mower, Nicholas C. Harris, Dirk R. Englund, Greg Steinbrecher
  • Patent number: 9791258
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: October 17, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacob C. Mower, Nicholas C. Harris, Dirk R. Englund, Greg Steinbrecher
  • Publication number: 20170293082
    Abstract: A large-scale tunable-coupling ring array includes an input waveguide coupled to multiple ring resonators, each of which has a distinct resonant wavelength. The collective effect of these multiple ring resonators is to impart a distinct time delay to a distinct wavelength component (or frequency component) in an input signal, thereby carrying out quantum scrambling of the input signal. The scrambled signal is received by a receiver also using a large-scale tunable-coupling ring array. This receiver-end ring resonator array recovers the input signal by imparting a compensatory time delay to each wavelength component. Each ring resonator can be coupled to the input waveguide via a corresponding Mach Zehnder interferometer (MZI). The MZI includes a phase shifter on at least one of its arms to increase the tunability of the ring array.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 12, 2017
    Inventors: Jacob C. MOWER, Jelena NOTAROS, Mikkel HEUCK, Dirk Robert ENGLUND, Cosmo LUPO, Seth LLOYD
  • Publication number: 20160245639
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Application
    Filed: April 29, 2016
    Publication date: August 25, 2016
    Inventors: Jacob C. Mower, Nicholas C. Harris, Dirk R. Englund, Greg Steinbrecher
  • Patent number: 9354039
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: May 31, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Jacob C. Mower, Nicholas C. Harris, Dirk R. Englund, Greg Steinbrecher
  • Publication number: 20150354938
    Abstract: A programmable photonic integrated circuit implements arbitrary linear optics transformations in the spatial mode basis with high fidelity. Under a realistic fabrication model, we analyze programmed implementations of the CNOT gate, CPHASE gate, iterative phase estimation algorithm, state preparation, and quantum random walks. We find that programmability dramatically improves device tolerance to fabrication imperfections and enables a single device to implement a broad range of both quantum and classical linear optics experiments. Our results suggest that existing fabrication processes are sufficient to build such a device in the silicon photonics platform.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Jacob C. Mower, Nicholas C. Harris, Dirk R. Englund, Greg Steinbrecher