Patents by Inventor Jacob Christopher Sharpe

Jacob Christopher Sharpe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240183965
    Abstract: A one way ranging method estimates a distance between first and second wireless devices using a technique that involves exchanging dual tone RF signals between the devices and, at each of the first and second devices, maintaining “baseband coherence” between baseband signals carried by the RF signals transmitted and received by each respective device.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 6, 2024
    Inventors: Jacob Christopher Sharpe, Fei Tong
  • Patent number: 11930461
    Abstract: Techniques and systems for extending the capture range of frequency offset error detection are described. For instance, the present disclose describes efficient frequency estimation structures (e.g., zero crossing minimum/maximum (min/max) structures) that may extend carrier frequency offset error capture range by running a bank (e.g., a set) of parallel capture range structures trialing different frequency errors. In some aspects, a set of frequency offset estimation circuits and a set of correlation circuits (e.g., 1-bit correlators) may be used on parallel streams to perform correlation operations on each branch of a received bit stream to determine correlations with known preamble patterns (e.g., to accurately estimate large frequency offset errors).
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: March 12, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Farshid Nowshadi, Jacob Christopher Sharpe
  • Publication number: 20240023038
    Abstract: Techniques and systems for extending the capture range of frequency offset error detection are described. For instance, the present disclose describes efficient frequency estimation structures (e.g., zero crossing minimum/maximum (min/max) structures) that may extend carrier frequency offset error capture range by running a bank (e.g., a set) of parallel capture range structures trialing different frequency errors. In some aspects, a set of frequency offset estimation circuits and a set of correlation circuits (e.g., 1-bit correlators) may be used on parallel streams to perform correlation operations on each branch of a received bit stream to determine correlations with known preamble patterns (e.g., to accurately estimate large frequency offset errors).
    Type: Application
    Filed: July 15, 2022
    Publication date: January 18, 2024
    Inventors: Farshid Nowshadi, Jacob Christopher Sharpe
  • Patent number: 11525909
    Abstract: A measurement method performed at a receiving device involves sequentially receiving RF signals, each comprising a different set of at least first and second tones at differing frequencies. Complex gain responses (CGRs) for each of the first and second tones of each of the RF signals are measured. A phase offset is determined between: i) a phase of the CGR of the second tone of a first RF signal, and ii) a phase of the CGR of the first tone of a second RF signal. A coherent channel frequency (CCF) response of the second tone of the second RF signal is computed by adjusting a phase of the CGR of the second tone of the first RF signal by the phase offset. A processor executes a signal paths calculation algorithm using the CCF response of the second tone of the second RF signal to determine an angle or time of arrival of the first RF signal.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: December 13, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Fei Tong, Jacob Christopher Sharpe
  • Patent number: 10819554
    Abstract: A polar transmitter and method thereof generate a filtered IQ waveform in IQ space representing an input bit stream. The filtered IQ waveform is modified to avoid a zero crossing region by intermittently adding thereto a zero crossing avoidance signal with a frequency spectrum comprising at least first and second tones defining first and second peaks on opposite sides of a center-frequency valley. A polar signal comprising a polar amplitude and phase is generated based on the modified IQ waveform. An RF carrier is modulated using the polar signal.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 27, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jacob Christopher Sharpe
  • Publication number: 20200166631
    Abstract: A measurement method performed at a receiving device involves sequentially receiving RF signals, each comprising a different set of at least first and second tones at differing frequencies. Complex gain responses (CGRs) for each of the first and second tones of each of the RF signals are measured. A phase offset is determined between: i) a phase of the CGR of the second tone of a first RF signal, and ii) a phase of the CGR of the first tone of a second RF signal. A coherent channel frequency (CCF) response of the second tone of the second RF signal is computed by adjusting a phase of the CGR of the second tone of the first RF signal by the phase offset. A processor executes a signal paths calculation algorithm using the CCF response of the second tone of the second RF signal to determine an angle or time of arrival of the first RF signal.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 28, 2020
    Inventors: Fei Tong, Jacob Christopher Sharpe
  • Publication number: 20200153674
    Abstract: A polar transmitter and method thereof generate a filtered IQ waveform in IQ space representing an input bit stream. The filtered IQ waveform is modified to avoid a zero crossing region by intermittently adding thereto a zero crossing avoidance signal with a frequency spectrum comprising at least first and second tones defining first and second peaks on opposite sides of a center-frequency valley. A polar signal comprising a polar amplitude and phase is generated based on the modified IQ waveform. An RF carrier is modulated using the polar signal.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 14, 2020
    Inventor: Jacob Christopher Sharpe
  • Patent number: 10523489
    Abstract: A polar transmitter and method thereof generate a filtered IQ waveform in IQ space representing an input bit stream. The filtered IQ waveform is modified to avoid a zero crossing region by intermittently adding thereto a zero crossing avoidance signal with a frequency spectrum comprising at least first and second tones defining first and second peaks on opposite sides of a center-frequency valley. A polar signal comprising a polar amplitude and phase is generated based on the modified IQ waveform. An RF carrier is modulated using the polar signal.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 31, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jacob Christopher Sharpe