Patents by Inventor Jacob Fraser

Jacob Fraser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180298331
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 18, 2018
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20180057788
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 1, 2018
    Inventors: Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Sam Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20180023050
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 25, 2018
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, Jordan Kerns, Antonio Varone, Dongeun Huh
  • Publication number: 20180024120
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 25, 2018
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, Jordan Kerns, Antonio Varone, Dongeun Huh
  • Publication number: 20180024118
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 25, 2018
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, Jordan Kerns, Antonio Varone, Dongeun Huh
  • Publication number: 20180024119
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 25, 2018
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, Jordan Kerns, Antonio Varone, Dongeun Huh
  • Publication number: 20180024116
    Abstract: Compositions, devices and methods are described for improving adhesion, attachment, and/or differentiation of cells in a microfluidic device or chip. In one embodiment, one or more ECM proteins are covalently coupled to the surface of a microchannel of a microfluidic device. The microfluidic devices can be stored or used immediately for culture and/or support of living cells such as mammalian cells, and/or for simulating a function of a tissue, e.g., a liver tissue, muscle tissue, etc. Extended adhesion and viability with sustained function over time is observed.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 25, 2018
    Inventors: Daniel Levner, Kyung Jin Jang, Jacob Fraser, Jordan Kerns, Antonio Varone, Dongeun Huh
  • Publication number: 20180017583
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoung Shin Park, Antonio Varone, Andries Van der Meer, Monica Otieno, David Conegliano
  • Publication number: 20180015455
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoung Shin Park, Antonio Varone, Andries Van der Meer, Monica Otieno, David Conegliano
  • Publication number: 20180017585
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoung Shin Park, Antonio Varone, Andries Van der Meer, Monica Otieno, David Conegliano
  • Publication number: 20180017586
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoung Shin Park, Antonio Varone, Andries Va der Meer, Monica Otieno, David Conegliano
  • Publication number: 20180017584
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Noeman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoung Shin Park, Antonio Varone, Andries Van der Meer, Monica Otieno, David Conegliano
  • Publication number: 20180015462
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoung Shin Park, Antonio Varone, Andries Van der Meer, Monica Otieno, David Conegliano
  • Publication number: 20180017582
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 18, 2018
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoung Shin Park, Antonio Varone, Andries Van der Meer, Monica Otieno, David Conegliano
  • Publication number: 20170226478
    Abstract: The invention relates to culturing motor neuron cells together with skeletal muscle cells in a fluidic device under conditions whereby the interaction of these cells mimic the structure and function of the neuromuscular junction (NMJ) providing a NMJ-on-chip. Good viability, formation of myo-fibers and function of skeletal muscle cells on fluidic chips allow for measurements of muscle cell contractions. Embodiments of motor neurons co-cultures with contractile myo-fibers are contemplated for use with modeling diseases affecting NMJ's, e.g. Amyotrophic lateral sclerosis (ALS).
    Type: Application
    Filed: March 14, 2017
    Publication date: August 10, 2017
    Inventors: Jordan Kerns, Norman Wen, Geraldine Hamilton, Christopher Hinojosa, Jacob Fraser, Catherine Karalis, Janna Nawroth, Dhruv Sareen, Anjoscha Kaus, Berhan Mandefro, Hyoung Shin Park, Ville Kujala
  • Patent number: 9410496
    Abstract: A control system for an internal combustion engine that utilizes an oxygen sensor signal to control at least one fuel injector while generating a false oxygen sensor signal for input to an engine control unit.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: August 9, 2016
    Inventors: William E. Kirkpatrick, Jacob Fraser
  • Patent number: 9291530
    Abstract: An apparatus and method are disclosed for sampling and analyzing the exhaust gas or liquid from an internal combustion engine or other device that generates a flow of exhaust gas or liquid during use. The apparatus includes a connector that is adapted to be secured adjacent to an aperture formed through an outlet conduit of an engine or other device that generates a flow of exhaust gas or liquid therethrough during use. A conduit communicates with the connector and is adapted to receive and pass therethrough at least a portion of the exhaust gas or liquid from the outlet conduit. A sensor chamber communicates with the conduit and is adapted to receive and pass therethrough at least a portion of the exhaust gas or liquid from the conduit. A one-way valve only allows the exhaust gas or liquid in the sensor chamber to exit therefrom. Lastly, a sensor senses at least one characteristic of the exhaust gas or liquid in the sensor chamber and generates a signal that is representative of such characteristic.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: March 22, 2016
    Assignee: Techlusion Corporation
    Inventors: Mark E. Dobeck, Jacob Fraser