Patents by Inventor Jacob Gregers Hansen
Jacob Gregers Hansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11817738Abstract: According to an example, an uninterruptible power supply is provided comprising a first input, a backup input, an output to provide output power, an inverter coupled to the first input, the backup input, and the output, a first sensor to detect a voltage at an inverter output, a second sensor to detect a voltage at the first input, a switch coupled between the first input and the output, and a controller coupled to the switch and the first and second sensors, and configured to determine a first voltage difference across the bypass switch using at least one of the first sensor or the second sensor, filter the first voltage difference, determine whether a value derived from the first filtered voltage difference exceeds a threshold, and output an indication of a failure of the bypass switch based on the value derived from the first filtered voltage difference exceeding the threshold.Type: GrantFiled: September 20, 2021Date of Patent: November 14, 2023Assignee: SCHNEIDER ELECTRIC IT CORPORATIONInventors: Kristian Budde, Jesper Hougaard Johansen, Jacob Gregers Hansen
-
Publication number: 20220388156Abstract: The invention relates to a robot controller controlling a robot arm, the robot controller is configured to maintain the robot arm in a static posture when only gravity is acting on the robot arm and allow change in posture of the robot arm when an external force different from gravity is applied to the robot arm. The free-drive mode of operation is activatable by a user establishing a free-drive activation signal to the robot controller, which then is configured to: —monitor a value of at least one joint sensor parameter; —compare the value of the joint sensor parameter to a maintain free-drive joint sensor parameter threshold value; —maintain the robot arm in said free-drive mode of operation for a predetermined maintain free-drive period of time, and —leave the free-drive mode of operation if the value of the joint sensor parameter docs not exceed the maintain free-drive joint sensor parameter threshold value within the maintain free-drive period of time.Type: ApplicationFiled: October 9, 2020Publication date: December 8, 2022Applicant: Universal Robots A/SInventor: Jacob Gregers HANSEN
-
Publication number: 20220379468Abstract: The invention relates to a robot controller controlling a robot arm, the robot controller is configured to maintain the robot arm in a static posture when only gravity is acting on the robot arm and allow change in posture of the robot arm 5 when an external force different from gravity is applied to the robot arm. The free-drive mode of operation is activatable by a user establishing a free-drive activation signal to the robot controller, which in free-drive mode of operation is configured within at a free-drive safety period to allow a part of said robot arm to be moved within a virtual three-dimensional geometric shape 10 surrounding the part of the robot arm.Type: ApplicationFiled: October 9, 2020Publication date: December 1, 2022Applicant: Universal Robots A/SInventor: Jacob Gregers HANSEN
-
Publication number: 20220379463Abstract: The invention relates to a robot controller controlling a robot arm, the robot controller is configured to maintain the robot arm in a static posture when only gravity is acting on the robot arm and allow change in posture of the robot arm when an external force different from gravity is applied to the robot arm. The free-drive mode of operation is activatable by a user establishing a free-drive activation signal to the robot controller, which then is configured to initiate a free-drive mode activation sequence including the steps of: in a predetermined activation sequence period of time monitor a value of at least one joint sensor parameter, and compare this value to a free-drive activation joint sensor parameter threshold value. The robot controller is configured to switch to the free-drive mode of operation if the at least one value does not exceed the free-drive activation joint sensor parameter threshold value within the predetermined activation sequence period of time.Type: ApplicationFiled: October 9, 2020Publication date: December 1, 2022Applicant: Universal Robots A/SInventor: Jacob Gregers HANSEN
-
Publication number: 20220226995Abstract: A multipurpose robot arm having a controller configured to control the motion hereof during an operation process according to a plurality of basic operation commands Wherein the robot controller is configured to control the multipurpose robot arm in a standard mode of operation according to a first subset of the basic operation commands and in an application specific operation mode during part of the robot arm operation process according to a second subset of the basic operation commands. Wherein basic operation commands of the second subset are at least partly comprised by the first subset and wherein at least one of the operation parameters of the second subset is limited by a application operation value. Wherein the application operation value is defined by a desired property of the operation of the multipurpose robot arm in the application specific operation mode.Type: ApplicationFiled: May 28, 2020Publication date: July 21, 2022Inventors: Anders Billesø BECK, Jacob Gregers HANSEN, William LEDDA, Theis STRØM-HANSEN
-
Publication number: 20220109322Abstract: According to an example, an uninterruptible power supply is provided comprising a first input, a backup input, an output to provide output power, an inverter coupled to the first input, the backup input, and the output, a first sensor to detect a voltage at an inverter output, a second sensor to detect a voltage at the first input, a switch coupled between the first input and the output, and a controller coupled to the switch and the first and second sensors, and configured to determine a first voltage difference across the bypass switch using at least one of the first sensor or the second sensor, filter the first voltage difference, determine whether a value derived from the first filtered voltage difference exceeds a threshold, and output an indication of a failure of the bypass switch based on the value derived from the first filtered voltage difference exceeding the threshold.Type: ApplicationFiled: September 20, 2021Publication date: April 7, 2022Inventors: Kristian Budde, Jesper Hougaard Johansen, Jacob Gregers Hansen
-
Patent number: 11128164Abstract: According to an example, an uninterruptible power supply is provided comprising a first input, a backup input, an output to provide output power, an inverter coupled to the first input, the backup input, and the output, a first sensor to detect a voltage at an inverter output, a second sensor to detect a voltage at the first input, a switch coupled between the first input and the output, and a controller coupled to the switch and the first and second sensors, and configured to determine a first voltage difference across the bypass switch using at least one of the first sensor or the second sensor, filter the first voltage difference, determine whether a value derived from the first filtered voltage difference exceeds a threshold, and output an indication of a failure of the bypass switch based on the value derived from the first filtered voltage difference exceeding the threshold.Type: GrantFiled: March 11, 2020Date of Patent: September 21, 2021Assignee: SCHNEIDER ELECTRIC IT CORPORATIONInventors: Kristian Budde, Jesper Hougaard Johansen, Jacob Gregers Hansen
-
Publication number: 20210288518Abstract: According to an example, an uninterruptible power supply is provided comprising a first input, a backup input, an output to provide output power, an inverter coupled to the first input, the backup input, and the output, a first sensor to detect a voltage at an inverter output, a second sensor to detect a voltage at the first input, a switch coupled between the first input and the output, and a controller coupled to the switch and the first and second sensors, and configured to determine a first voltage difference across the bypass switch using at least one of the first sensor or the second sensor, filter the first voltage difference, determine whether a value derived from the first filtered voltage difference exceeds a threshold, and output an indication of a failure of the bypass switch based on the value derived from the first filtered voltage difference exceeding the threshold.Type: ApplicationFiled: March 11, 2020Publication date: September 16, 2021Inventors: Kristian Budde, Jesper Hougaard Johansen, Jacob Gregers Hansen