Patents by Inventor Jacob Khurgin
Jacob Khurgin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11374654Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: GrantFiled: April 7, 2021Date of Patent: June 28, 2022Assignee: Morton Photonics IncInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20210306075Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: ApplicationFiled: April 7, 2021Publication date: September 30, 2021Inventors: Paul A. MORTON, Jacob KHURGIN
-
Patent number: 11092871Abstract: A novel transmitter is proposed that provides broadband all-optical linearization of a Mach-Zehnder interferometer (MZI) modulator for use in high linearity RF photonic links and optical up-converter and down-converter schemes. It is based on an amplitude modulated (AM) MZI modulator where part of the laser Carrier is passed around the MZI modulator and added back to the AM signal, creating a Controlled Carrier-AM (CC-AM) signal. In this new scheme, a dual output MZI modulator is utilized, and the alternative output (Carrier*) is used together with the Carrier from the laser to create a new signal, LO*, which when coherently combined with the AM signal can reduce or completely cancel its 3rd order intermodulation distortion.Type: GrantFiled: June 29, 2020Date of Patent: August 17, 2021Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 11018770Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: GrantFiled: June 9, 2020Date of Patent: May 25, 2021Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20210006333Abstract: High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.Type: ApplicationFiled: June 9, 2020Publication date: January 7, 2021Inventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20200409229Abstract: A novel transmitter is proposed that provides broadband all-optical linearization of a Mach-Zehnder interferometer (MZI) modulator for use in high linearity RF photonic links and optical up-converter and down-converter schemes. It is based on an amplitude modulated (AM) MZI modulator where part of the laser Carrier is passed around the MZI modulator and added back to the AM signal, creating a Controlled Carrier-AM (CC-AM) signal. In this new scheme, a dual output MZI modulator is utilized, and the alternative output (Carrier*) is used together with the Carrier from the laser to create a new signal, LO*, which when coherently combined with the AM signal can reduce or completely cancel its 3rd order intermodulation distortion.Type: ApplicationFiled: June 29, 2020Publication date: December 31, 2020Inventors: Paul A. MORTON, Jacob KHURGIN
-
Patent number: 10855376Abstract: The present invention reduces the level of optical reflections created in a photonic integrated circuit (PIC) going back into an integrated laser through Reflection Engineering; optimizing the phase/timing and position of optical reflections inherent to a PIC design while adding engineered reflections to the PIC to allow inherent reflections to be reduced or eliminated. The Wavelength Division Multiplexed (WDM) geometric optical isolator of the present invention combines an array of closely spaced WDM lasers with an array of modulators in a novel geometry in order to provide effective optical isolation of the lasers.Type: GrantFiled: January 30, 2020Date of Patent: December 1, 2020Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10727947Abstract: The present invention reduces the level of optical reflections created in a photonic integrated circuit (PIC) going back into an integrated laser through Reflection Engineering; optimizing the phase/timing and position of optical reflections inherent to a PIC design while adding engineered reflections to the PIC to allow inherent reflections to be reduced or eliminated. The Wavelength Division Multiplexed (WDM) geometric optical isolator of the present invention combines an array of closely spaced WDM lasers with an array of modulators in a novel geometry in order to provide effective optical isolation of the lasers.Type: GrantFiled: April 24, 2019Date of Patent: July 28, 2020Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10715254Abstract: High-performance ultra-wideband Phased Array Sensors (PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Receive PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides, combining key component technologies into complex PIC devices. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture also includes optical down-conversion, as well as digital signal processing to improve the linearity of the system. Simultaneous multi-channel beamforming is achieved through optical power splitting of optical signals to create multiple exact replicas of the signals that are then processed independently.Type: GrantFiled: March 18, 2019Date of Patent: July 14, 2020Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20190253146Abstract: The present invention reduces the level of optical reflections created in a photonic integrated circuit (PIC) going back into an integrated laser through Reflection Engineering; optimizing the phase/timing and position of optical reflections inherent to a PIC design while adding engineered reflections to the PIC to allow inherent reflections to be reduced or eliminated. The Wavelength Division Multiplexed (WDM) geometric optical isolator of the present invention combines an array of closely spaced WDM lasers with an array of modulators in a novel geometry in order to provide effective optical isolation of the lasers.Type: ApplicationFiled: April 24, 2019Publication date: August 15, 2019Applicant: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20190215070Abstract: High-performance ultra-wideband Phased Array Sensors (PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Receive PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides, combining key component technologies into complex PIC devices. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture also includes optical down-conversion, as well as digital signal processing to improve the linearity of the system. Simultaneous multi-channel beamforming is achieved through optical power splitting of optical signals to create multiple exact replicas of the signals that are then processed independently.Type: ApplicationFiled: March 18, 2019Publication date: July 11, 2019Inventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10277324Abstract: High-performance ultra-wideband Phased Array Sensors (PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Receive PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides, combining key component technologies into complex PIC devices. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture also includes optical down-conversion, as well as digital signal processing to improve the linearity of the system. Simultaneous multi-channel beamforming is achieved through optical power splitting of optical signals to create multiple exact replicas of the signals that are then processed independently.Type: GrantFiled: October 10, 2018Date of Patent: April 30, 2019Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20190097725Abstract: High-performance ultra-wideband Phased Array Sensors (PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Receive PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides, combining key component technologies into complex PIC devices. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture also includes optical down-conversion, as well as digital signal processing to improve the linearity of the system. Simultaneous multi-channel beamforming is achieved through optical power splitting of optical signals to create multiple exact replicas of the signals that are then processed independently.Type: ApplicationFiled: October 10, 2018Publication date: March 28, 2019Applicant: Morton PhotonicsInventors: Paul A. MORTON, Jacob KHURGIN
-
Patent number: 10234701Abstract: In the Waveguide Array Modulator (WAM) a single electrical signal drives an array of waveguide optical modulators, creating multiple modulated output signals that can be combined to provide a higher output power than from a single waveguide based modulator, enabling a higher dynamic range system. Alternatively, using a WAM in which different waveguide optical modulators are designed for different dynamic ranges, e.g. one highly efficient modulator for low level signals and one low efficiency but linear modulator for high level signals, the WAM based system can provide a higher dynamic range than from a single waveguide based modulator. Various WAM based systems for different applications are included.Type: GrantFiled: October 18, 2017Date of Patent: March 19, 2019Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10162117Abstract: This invention removes the need to provide temperature control for an optical time delay chip, which is usually provided by a thermo-electric-cooler, in order to significantly reduce the power dissipation of the device and allow ‘uncooled’ operation. Uncooled operation is achieved by monitoring the temperature of the chip, and changing the tuning of each microresonator within the device in order to continue providing the required time delay as the temperature is varied. This invention takes advantage of the fact that microresonators provide a series of resonant wavelengths over a wide wavelength range, so that the closest resonance wavelength below the operating wavelength can always be tuned up to that wavelength. When the device temperature changes, this is accounted for by both the choice of resonance wavelengths and the tuning for each of the microresonators in the device, in order to keep the correct tunable delay.Type: GrantFiled: March 18, 2014Date of Patent: December 25, 2018Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10128952Abstract: High-performance ultra-wideband Receive Phased Array Sensors (Rx-PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Rx-PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture includes tunable optical down-conversion, moving a chosen frequency band to baseband with high dynamic range; creating also a single frequency hand channelizer, which is also expanded to create a multiple tunable frequency band channelizer.Type: GrantFiled: January 5, 2017Date of Patent: November 13, 2018Assignee: Morton PhotonicsInventors: Paul A. Morton, Jacob Khurgin
-
Publication number: 20180217332Abstract: This invention removes the need to provide temperature control for an optical time delay chip, which is usually provided by a thermo-electric-cooler, in order to significantly reduce the power dissipation of the device and allow ‘uncooled’ operation. Uncooled operation is achieved by monitoring the temperature of the chip, and changing the tuning of each microresonator within the device in order to continue providing the required time delay as the temperature is varied. This invention takes advantage of the fact that microresonators provide a series of resonant wavelengths over a wide wavelength range, so that the closest resonance wavelength below the operating wavelength can always be tuned up to that wavelength. When the device temperature changes, this is accounted for by both the choice of resonance wavelengths and the tuning for each of the microresonators in the device, in order to keep the correct tunable delay.Type: ApplicationFiled: March 18, 2014Publication date: August 2, 2018Inventors: Paul A. Morton, Jacob Khurgin
-
Patent number: 10033477Abstract: A system includes an optical Y-junction coupler to receive a first modulated optical signal on a wide input path of the optical Y-junction coupler and to receive a second modulated optical signal on a narrow input path of the optical Y-junction coupler, wherein the optical Y-junction coupler generates a combined optical signal from signals received on the wide input path and the narrow input path. A multimode waveguide receives the combined optical signal from the optical Y-junction coupler and propagates a spatially multiplexed optical output signal along a transmission path.Type: GrantFiled: July 27, 2012Date of Patent: July 24, 2018Assignee: Hewlett Packard Enterprise Development LPInventors: Alexandre M Bratkovski, Jacob Khurgin, Wayne Victor Sorin, Michael Renne Ty Tan
-
Publication number: 20180107030Abstract: In the Waveguide Array Modulator (WAM) a single electrical signal drives an array of waveguide optical modulators, creating multiple modulated output signals that can be combined to provide a higher output power than from a single waveguide based modulator, enabling a higher dynamic range system. Alternatively, using a WAM in which different waveguide optical modulators are designed for different dynamic ranges, e.g. one highly efficient modulator for low level signals and one low efficiency but linear modulator for high level signals, the WAM based system can provide a higher dynamic range than from a single waveguide based modulator. Various WAM based systems for different applications are included.Type: ApplicationFiled: October 18, 2017Publication date: April 19, 2018Inventors: Paul A. MORTON, Jacob KHURGIN
-
Publication number: 20180102849Abstract: High-performance ultra-wideband Receive Phased Array Sensors (Rx-PAS) are disclosed, which have unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for a Rx-PAS are provided by wafer scale photonic integration including heterogeneous integration of III-V materials and ultra-low-loss silicon nitride waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors providing the capability to combine many RF photonic signals with very low loss. The architecture includes tunable optical down-conversion, moving a chosen frequency band to baseband with high dynamic range; creating also a single frequency band channelizer, which is also expanded to create a multiple tunable frequency band channelizer.Type: ApplicationFiled: January 5, 2017Publication date: April 12, 2018Inventors: Paul A. MORTON, Jacob KHURGIN