Patents by Inventor Jacob N. Israelachvili

Jacob N. Israelachvili has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8563485
    Abstract: A tribo-system includes a metal substrate having a surfactant layer chemisorbed to a side thereof, a lubricant established on the metal substrate, and a plurality of nanoparticles dispersed in the lubricant. Each of the nanoparticles includes i) an inorganic core having a predetermined size and shape, and ii) a surfactant shell chemisorbed to a surface of the inorganic core, where the surfactant shell has a predetermined thickness. The adhesive force and energy between the metal substrate surface and the nanoparticles is higher than the adhesive force and energy between individual particles of the nanoparticles.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: October 22, 2013
    Assignees: GM Global Technology Operations LLC, The Regents of The University of California
    Inventors: Gregory Mordukhovich, Jacob N. Israelachvili
  • Patent number: 8551576
    Abstract: A method for controlling a coefficient of friction involves applying a magnetic force, an electro-magnetic force, and/or an electrostatic force to nanoparticles disposed on a surface. The method further involves controlling a rolling-to-sliding ratio of the nanoparticles on the surface by i) adjusting a value of the force applied to the nanoparticles, and/or ii) adjusting an orientation of the nanoparticles by adjusting a direction of the force applied to the nanoparticles.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: October 8, 2013
    Assignees: GM Global Technology Operations LLC, The Regents of The University of California
    Inventors: Gregory Mordukhovich, Jacob N. Israelachvili
  • Publication number: 20110287986
    Abstract: A method for controlling a coefficient of friction involves applying a magnetic force, an electro-magnetic force, and/or an electrostatic force to nanoparticles disposed on a surface. The method further involves controlling a rolling-to-sliding ratio of the nanoparticles on the surface by i) adjusting a value of the force applied to the nanoparticles, and/or ii) adjusting an orientation of the nanoparticles by adjusting a direction of the force applied to the nanoparticles.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 24, 2011
    Applicants: The Regents of the University of California, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, Jacob N. Israelachvili
  • Publication number: 20110287987
    Abstract: A tribo-system includes a metal substrate having a surfactant layer chemisorbed to a side thereof, a lubricant established on the metal substrate, and a plurality of nanoparticles dispersed in the lubricant. Each of the nanoparticles includes i) an inorganic core having a predetermined size and shape, and ii) a surfactant shell chemisorbed to a surface of the inorganic core, where the surfactant shell has a predetermined thickness. The adhesive force and energy between the metal substrate surface and the nanoparticles is higher than the adhesive force and energy between individual particles of the nanoparticles.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 24, 2011
    Applicants: The Regents of the University of California, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, Jacob N. Israelachvili
  • Patent number: 5861954
    Abstract: A surface forces measuring apparatus (SFA) including miniature rheometers and friction measuring devices. Both static (i.e., equilibrium) forces and dynamic (e.g., time-dependent such as viscous, hysteretic and frictional) forces can be measured between two surfaces in relative motion to each other along the z-direction (normally) or the x- or y-directions (horizontally), or along any desired direction in 3D space. The new instrument uses a novel combination of piezoelectric tubes and N-type bimorphs, and a three-stage mechanical mechanism to produce linear motion of one of the surfaces along any desired direction, and a combination of an optical technique and semi-conductor strain-gauges allows for the force produced on the other surface to be directly measured, also in any direction (which may be in a different direction from that of the first surface which generates the force).
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: January 19, 1999
    Inventor: Jacob N. Israelachvili