Patents by Inventor Jacob Richter

Jacob Richter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7875071
    Abstract: A system and method for delivering and assembling a bifurcated stent in a bifurcated vessel having a first lumen and a second lumen. The system and method includes the use of three balloon catheters wherein at least one of the catheters is a fixed wire catheter. A first segment of the bifurcated stent having a stem portion, a first leg portion, a longitudinal bore extending therethrough and a branch aperture formed in the side wall is mounted on two of the balloon catheters and delivered to the treatment site where it is implanted into the first lumen. A second segment of the bifurcated stent having a proximal end, a distal end and a longitudinal bore extending therethrough is mounted on the third balloon catheter and is delivered to the treatment site such that the distal end extends into the second lumen and the proximal end extends into longitudinal bore of the first segment.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 25, 2011
    Assignee: Medinol, Ltd.
    Inventor: Jacob Richter
  • Patent number: 7828835
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 9, 2010
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20100280593
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions or ostial regions. The stent can include an end region which is fabricated to have a greater radial strength than the remaining axial length of the stent. Such a stent is particularly suited for use in ostial regions, which require greater support near the end of the stent. The stent alternatively can include sections adjacent the end of the stent with greater bending flexibility than the remaining axial length of the stent. Such a stent is particularly suited for use in curved arteries. The stent can also be constructed with an end that has greater radial strength and sections adjacent the end with greater bending flexibility. Such a stent prevents flaring of the stent end during insertion.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 4, 2010
    Applicant: MEDINOL, LTD.
    Inventor: Jacob RICHTER
  • Publication number: 20100274350
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of a main stent component and a securement. The main stent component is formed from a flat strip having one or more undulating side bands that may be connected to form geometrically shaped cells and are helically wound to form a stent. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical windings contributes to maintaining the tubular shape and uniformity of the helically coiled stent. Alternatively, the flat strip may comprise a single undulating pattern. At the ends of the main stent component are end bands, which when wound, form a cylindrical ring. In one embodiment, one or more struts of the main stent component may have a width sufficient to include one or more fenestrations. The fenestrated struts may be connected by loops or turns wherein the material is narrower than that of the fenestrated struts to provide enhanced flexibility.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 28, 2010
    Applicant: MEDINOL LTD.
    Inventor: Jacob RICHTER
  • Publication number: 20100228339
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Application
    Filed: May 10, 2010
    Publication date: September 9, 2010
    Applicant: MEDINOL, LTD.
    Inventor: Jacob RICHTER
  • Patent number: 7785319
    Abstract: A therapeutic device and therapeutic method for delivering electrical energy to a polymer containing a medicament that allows release of the medicament to a body tissue or organ. The device and method utilizes ultrasonic vibrations to cause the device, implanted in the body tissue or organ to be treated, to discharge an electrical current to the polymer containing the medicament. The medicament is controllably released to the target area by changing the charge of the polymer with the electrical current.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 31, 2010
    Assignee: Microtech Medical Technologies Ltd.
    Inventor: Jacob Richter
  • Publication number: 20100185275
    Abstract: A modular prosthetic valve device for implantation in a patient is disclosed. The valve device is designed as two or more modules to be delivered unassembled and combined into an assembled valve device in the body—e.g., in the body at or near the site where implantation occurs. The two or more modules may be a support structure and a valve assembly. The valve assembly may be formed from two or more valve sections. Because the valve device of the invention is deliverable as modules, it may have a smaller delivery diameter than pre-assembled percutaneous valves and permits use of a delivery device of reduced diameter. Delivering the valve device as modules increases the flexibility of the valve device during delivery, compared to percutaneous valve devices in the art. The invention further provides a system for and method of delivering such a modular valve device and assembling it in vivo.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 22, 2010
    Applicant: VALVE MEDICAL LTD.
    Inventors: Yoram RICHTER, Jacob RICHTER
  • Patent number: 7758627
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: July 20, 2010
    Assignee: Medinol, Ltd.
    Inventor: Jacob Richter
  • Publication number: 20100179649
    Abstract: The invention provides a device for fine adjustment of a prosthetic valve device and a method of adjusting the position of a prosthetic valve after implantation. The adjustment mechanism includes complementary structures on a valve member and device frame that cooperate to provide relative axial and/or angular motion between the valve member and device frame (and thus the native vessel). The adjustment mechanism of the invention may also include a means for selectively maintaining the relative position of the valve member and device frame. The device and method are particularly applicable for use with a modular prosthetic valve device that is assembled in the body lumen.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 15, 2010
    Applicant: VALVE MEDICAL LTD.
    Inventors: Yoram RICHTER, Jacob RICHTER, Ety WEISZ
  • Publication number: 20100179648
    Abstract: A system and process for placing a percutaneous valve device in a body lumen at the location of implantation is provided. The placement system and method are simple and enhance the accuracy of the placement of the valve device. Anchors and placement wires or sutures are used to fix the implantation target and guide the device to the implantation site. The system and method are applicable to pre-assembled percutaneous valve devices as well as a modular prosthetic valve device, which modular device is also provided. The modular valve device comprises two or more device modules and is designed to be delivered unassembled and then assembled in the body lumen at or near the site where implantation occurs. The device modules may be assembled before or after the implantation target is fixed with the anchor, and then placed using the placement system in a manner similar to how a pre-assembled percutaneous valve device may be placed in accordance with the invention.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 15, 2010
    Applicant: VALVE MEDICAL LTD.
    Inventors: Yoram RICHTER, Jacob RICHTER
  • Patent number: 7722658
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: May 25, 2010
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20100100166
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 22, 2010
    Applicant: MEDINOL, LTD.
    Inventors: Jacob RICHTER, Gregory PINCHASIK
  • Publication number: 20100076540
    Abstract: A system and method for delivering and assembling a bifurcated stent in a bifurcated vessel having a first lumen and a second lumen. The system and method includes the use of three balloon catheters wherein at least one of the catheters is a fixed wire catheter. A first segment of the bifurcated stent having a stem portion, a first leg portion, a longitudinal bore extending therethrough and a branch aperture formed in the side wall is mounted on two of the balloon catheters and delivered to the treatment site where it is implanted into the first lumen. A second segment of the bifurcated stent having a proximal end, a distal end and a longitudinal bore extending therethrough is mounted on the third balloon catheter and is delivered to the treatment site such that the distal end extends into the second lumen and the proximal end extends into longitudinal bore of the first segment.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 25, 2010
    Applicant: MEDINOL, LTD.
    Inventor: Jacob RICHTER
  • Patent number: 7641685
    Abstract: A system and method for delivering and assembling a bifurcated stent in a bifurcated vessel having a first lumen and a second lumen. The system and method includes the use of three balloon catheters wherein at least one of the catheters is a fixed wire catheter. A first segment of the bifurcated stent having a stem portion, a first leg portion, a longitudinal bore extending therethrough and a branch aperture formed in the side wall is mounted on two of the balloon catheters and delivered to the treatment site where it is implanted into the first lumen. A second segment of the bifurcated stent having a proximal end, a distal end and a longitudinal bore extending therethrough is mounted on the third balloon catheter and is delivered to the treatment site such that the distal end extends into the second lumen and the proximal end extends into longitudinal bore of the first segment.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: January 5, 2010
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Publication number: 20090306759
    Abstract: The present invention relates to covered endoprosthetic devices. Covered endoprosthetic devices comprise an endoprosthesis and a sheath. The sheath comprises a central portion and outer portions, wherein the central portion preferentially restricts or causes a restriction of blood flow. Blood flow can be reduced by the central portion of the sheath by varying the permeability of the sheath or by having projections on the sheath that slow blood flow. Permeability may be provided by perforations or holes in the material of the sheath or by varying the polymer structure that makes up the sheath itself. The outer portions of the sheath do not substantially reduce blood flow. Methods of using sheath-covered endoprosthetic devices of the invention to treat aneurysms, especially aneurysms in proximity to small perforator vessels or arteries, are also encompassed.
    Type: Application
    Filed: August 13, 2009
    Publication date: December 10, 2009
    Applicant: MEDINOL LTD.
    Inventor: Jacob RICHTER
  • Publication number: 20090299383
    Abstract: The present invention relates to a device for the non-surgical clipping of aneurysms. The invention also includes methods of use to treat aneurysms, including intracranial aneurysms. The aneurysm is clipped by positioning a wire comprising a shape memory alloy, pre-set to a mutually twisted conformation, on opposite sides of the neck of the aneurysm and causing the wires to twist around each other. Thus, the aneurysm neck is substantially closed. The resulting thrombosis in the aneurysm further excludes the aneurysm from blood flow and pressure.
    Type: Application
    Filed: August 13, 2009
    Publication date: December 3, 2009
    Applicant: ZULI HOLDINGS LTD.
    Inventor: Jacob RICHTER
  • Patent number: 7621947
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: November 24, 2009
    Assignee: Medinol, Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20090272246
    Abstract: An improved string for a musical instrument comprising amorphous metal is disclosed. The string may be a single wire of amorphous metal or comprise a core wire and covering wire, wherein the core wire and/or covering wire comprises amorphous metal. Such a string has greater sustain of sound and higher volume of sound over a longer period of use than previously available metal strings. Musical instruments comprising such strings are also disclosed.
    Type: Application
    Filed: July 1, 2009
    Publication date: November 5, 2009
    Applicant: ZULI HOLDINGS LTD.
    Inventor: Jacob RICHTER
  • Patent number: 7601160
    Abstract: The present invention relates to a device for the non-surgical clipping of aneurysms. The invention also includes methods of use to treat aneurysms, including intracranial aneurysms. The aneurysm is clipped by positioning a wire comprising a shape memory alloy, pre-set to a mutually twisted conformation, on opposite sides of the neck of the aneurysm and causing the wires to twist around each other. Thus, the aneurysm neck is substantially closed. The resulting thrombosis in the aneurysm further excludes the aneurysm from blood flow and pressure.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: October 13, 2009
    Assignee: Zuli Holdings, Ltd
    Inventor: Jacob Richter
  • Publication number: 20090234433
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of an amorphous metal alloy or other non-amorphous metal with a securement. The stent is formed from flat or tubular metal in a helical coiled structure which has an undulating pattern. The main stent component may be formed of a single helically coiled component. Alternatively, a plurality of helically coiled ribbons may be used to form a stent heterogeneous in design, material, or other characteristic particular to that stent. The helical tubular structure may be secured with a securement, such as a weld, interlock or a polymer, to maintain the helical coils in a tubular configuration. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical coils contributes to maintaining the tubular shape of the helically coiled stent.
    Type: Application
    Filed: April 22, 2009
    Publication date: September 17, 2009
    Applicant: Medinol Ltd.
    Inventor: Jacob RICHTER