Patents by Inventor Jacob S. Gee
Jacob S. Gee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12343063Abstract: An end-effector configured to grasp tissue is disclosed herein. The end-effector includes an ultrasonic blade configured to transfer ultrasonic energy to the tissue and a clamp arm. The clamp arm includes a clamp arm pad including an electrically conductive material and an electrically non-conductive material. The clamp arm pad is configured as an electrode of a radiofrequency energy circuit, wherein the electrode is configured to transfer radiofrequency energy through the tissue to a return electrode of the radiofrequency energy circuit, and wherein the electrically non-conductive material is configured to reduce the possibility of an electrical short between the electrically conductive material and the ultrasonic blade as the clamp arm pad degrades throughout the usable life of the end effector.Type: GrantFiled: November 18, 2020Date of Patent: July 1, 2025Assignee: Cilag GmbH InternationalInventors: Jacob S. Gee, Michael A. Keenan, Joshua D. Raker, Jeffrey D. Messerly, Frederick E. Shelton, IV, Geoffrey S. Strobl, Joseph S. Salguero, Wei Guo
-
Patent number: 12318107Abstract: A surgical apparatus comprises a body, an ultrasonic transducer, a shaft, and an end effector. The ultrasonic transducer is operable to convert electrical power into ultrasonic vibrations. The body comprises a pivotal trigger. The shaft couples the end effector and the body together. The end effector comprises a clamp arm and an ultrasonic blade in acoustic communication with the ultrasonic transducer. The ultrasonic blade is operable to deliver ultrasonic vibrations to tissue. Pivotal movement of the trigger causes movement of the clamp arm. The trigger includes a compliant feature configured to limit the amount of force delivered to tissue by the clamp arm. The flexible feature may comprise a flexible band, living hinge, a series of living hinges, or a flexible tab.Type: GrantFiled: May 7, 2021Date of Patent: June 3, 2025Assignee: Cilag GmbH InternationalInventors: Craig N. Faller, Ryan M. Asher, John B. Schulte, Randal T. Byrum, Jose D. Vasquez, Thomas C. Gallmeyer, Benjamin M. Boyd, Amy L Marcotte, Jacob S. Gee, Jonathan T. Batross, Jeffrey D. Messerly
-
Publication number: 20250169844Abstract: A surgical instrument includes an ultrasonic transducer, an ultrasonic transmission waveguide extending from the ultrasonic transducer, and an ultrasonic blade acoustically coupled to the ultrasonic transmission waveguide. The ultrasonic blade includes a base and a curved body extending distally from the base. The curved body includes a tissue-treating surface extending on a first side of the curved body and a curved edge extending on a second side of the curved body opposite the first side. The curved edge has a proximal end and a distal end, wherein the proximal end is offset from the distal end in a first direction, wherein the proximal end is offset from the distal end in a second direction, and wherein the first direction is perpendicular to the second direction.Type: ApplicationFiled: September 26, 2024Publication date: May 29, 2025Inventors: Jacob S. Gee, Amy L. Marcotte, John A. Weed, III
-
Patent number: 12295608Abstract: An apparatus includes a shaft assembly, an ultrasonic blade, and a clamp assembly. The shaft assembly includes an acoustic waveguide operable to transmit ultrasonic vibrations to the blade. The clamp assembly includes a clamp arm pivotable toward and away from the blade about a pivot axis, to clamp tissue between the clamp arm and the blade. A rotation feature may provide rotation of the blade relative to the clamp arm about the longitudinal axis of the waveguide. Alternatively, the rotation feature may provide rotation of the clamp arm relative to the blade about the longitudinal axis. The rotation feature may be driven based on pivotal positioning of the clamp arm relative to the blade about the pivot axis. The rotation feature may selectively lock and unlock the angular position of either the blade or the clamp arm about the longitudinal axis at any of a number of predetermined angular positions.Type: GrantFiled: June 3, 2022Date of Patent: May 13, 2025Assignee: Cilag GmbH InternationalInventors: Craig N. Faller, Elizabeth DeBenedictis, William D. Kelly, Michael R. Lamping, Timothy G. Dietz, Patrick A. Weizman, Jacob S. Gee, John B. Schulte, Tylor C. Muhlenkamp, Douglas J. Turner, Eric B. Smith, Sean P. Conlon, Richard W. Timm, Jeffrey D. Messerly, Brian D. Bertke
-
Publication number: 20250090191Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.Type: ApplicationFiled: September 25, 2024Publication date: March 20, 2025Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
-
Publication number: 20250017614Abstract: An ultrasonic instrument includes a body and a shaft assembly extending distally from the body. The shaft assembly includes an acoustic waveguide. The instrument further includes an end effector including an ultrasonic blade. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The instrument further includes a sensor configured to sense at least one characteristic of the shaft assembly and/or the end effector. The end effector is configured to be activated at varying power levels based on the at least one characteristic sensed by the sensor.Type: ApplicationFiled: September 27, 2024Publication date: January 16, 2025Inventors: Ashvani K. Madan, David C. Groene, Benjamin M. Boyd, Craig N. Faller, Jacob S. Gee, Paul F. Riestenberg
-
Patent number: 12156674Abstract: A surgical instrument includes an ultrasonic transducer, an ultrasonic transmission waveguide extending from the ultrasonic transducer, and an ultrasonic blade acoustically coupled to the ultrasonic transmission waveguide. The ultrasonic blade includes a base and a curved body extending distally from the base. The curved body includes a tissue-treating surface extending on a first side of the curved body and a curved edge extending on a second side of the curved body opposite the first side. The curved edge has a proximal end and a distal end, wherein the proximal end is offset from the distal end in a first direction, wherein the proximal end is offset from the distal end in a second direction, and wherein the first direction is perpendicular to the second direction.Type: GrantFiled: April 29, 2021Date of Patent: December 3, 2024Assignee: Cilag GmbH InternationalInventors: Jacob S. Gee, Amy L. Marcotte, John A. Weed, III
-
Publication number: 20240374280Abstract: An ultrasonic instrument includes a housing, an ultrasonic transducer support by the housing, and an integrated usage indicator. The housing is configured to removably connect to a shaft assembly. The ultrasonic transducer is configured to be acoustically connected to a waveguide and operated a predetermined number of use cycles. The integrated usage indicator is operatively connected to the housing and includes a used state indicator. The used state indicator is configured to indicate to a clinician in a used state when the ultrasonic transducer has been operated at least the predetermined number of use cycles for limiting usage of the ultrasonic transducer to the predetermined number of use cycles.Type: ApplicationFiled: July 23, 2024Publication date: November 14, 2024Inventors: Ryan M. Asher, Brian D. Black, Chad P. Boudreaux, Nathan Cummings, William D. Dannaher, Craig T. Davis, Glenn W. Ellison, Frederick L. Estera, Jacob S. Gee, Geni M. Giannotti, Timothy S. Holland, Kevin L. Houser, Gregory W. Johnson, Amy M. Krumm, Jason R. Lesko, Stephen M. Leuck, Ion V. Nicolaescu, Candice Otrembiak, Amelia A. Pierce, Eric Roberson, Shan Wan
-
Patent number: 12127760Abstract: An ultrasonic instrument includes a body and a shaft assembly extending distally from the body. The shaft assembly includes an acoustic waveguide. The instrument further includes an end effector including an ultrasonic blade. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The instrument further includes a sensor configured to sense at least one characteristic of the shaft assembly and/or the end effector. The end effector is configured to be activated at varying power levels based on the at least one characteristic sensed by the sensor.Type: GrantFiled: March 4, 2021Date of Patent: October 29, 2024Assignee: Cilag GmbH InternationalInventors: Ashvani K. Madan, David C. Groene, Benjamin M. Boyd, Craig N. Faller, Jacob S. Gee, Paul F. Riestenberg
-
Patent number: 12121256Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency. The control circuit controls the temperature of the ultrasonic blade based on the inferred temperature.Type: GrantFiled: April 6, 2023Date of Patent: October 22, 2024Assignee: Cilag GmbH InternationalInventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
-
Patent number: 12070239Abstract: An ultrasonic instrument includes a housing, an ultrasonic transducer support by the housing, and an integrated usage indicator. The housing is configured to removably connect to a shaft assembly. The ultrasonic transducer is configured to be acoustically connected to a waveguide and operated a predetermined number of use cycles. The integrated usage indicator is operatively connected to the housing and includes a used state indicator. The used state indicator is configured to indicate to a clinician in a used state when the ultrasonic transducer has been operated at least the predetermined number of use cycles for limiting usage of the ultrasonic transducer to the predetermined number of use cycles.Type: GrantFiled: July 8, 2022Date of Patent: August 27, 2024Assignee: Cilag GmbH InternationalInventors: Ryan M. Asher, Brian D. Black, Chad P. Boudreaux, Nathan Cummings, William D. Dannaher, Craig T. Davis, Glenn W. Ellison, Frederick L Estera, Jacob S. Gee, Geni M. Giannotti, Timothy S. Holland, Kevin L. Houser, Gregory W. Johnson, Amy M. Krumm, Jason R. Lesko, Stephen M. Leuck, Ion V. Nicolaescu, Candice Otrembiak, Amelia A. Pierce, Eric Roberson, Shan Wan
-
Publication number: 20240180580Abstract: Systems, devices, and methods are operable to track usage of a surgical instrument and modify the performance of the surgical instrument based on the prior usage of the surgical instrument. Some surgical instruments are designed to have a limited service life beginning at their first use, or a limit to their overall usage in order to ensure safe use of the sensitive instruments. However, a lack of ability to track usage characteristics when the instrument is separated from an external power supply allows for user abuse and avoidance of such safety mechanisms. Adding a battery or capacitor to the instrument may allow for an ability to track usage when the instrument is separated from an external power supply. Implementing special user prompts, device use ratios, and device use half-life upon powering down of an instrument may additionally be used to prevent circumvention of safety features.Type: ApplicationFiled: January 2, 2024Publication date: June 6, 2024Inventors: Craig N. Faller, Benjamin D. Dickerson, Jeffrey L. Aldridge, Jeffrey A. Bullock, Richard W. Timm, Ryan M. Asher, Timothy S. Holland, Craig T. Davis, Christina M. Hough, Cory G. Kimball, Ashvani K. Madan, David C. Yates, Shan Wan, Jacob S. Gee, Joseph E. Hollo, Chad P. Boudreaux, John B. Schulte, Tylor C. Muhlenkamp, Brian D. Black
-
Publication number: 20240164802Abstract: A surgical instrument includes a transducer assembly with a housing having a conduit section and a base portion. A fluid passageway is defined through the conduit and base portion, an ultrasonic transducer including a plurality of piezoelectric elements and a plurality of electrodes are arranged in a stack configuration, where an electrode is located between each pair of piezoelectric elements. A first borehole is defined through the ultrasonic transducer and an end mass having a second borehole defined therethrough. A surface of the end mass is positioned adjacent a first end of the ultrasonic transducer, the end mass is configured to engage with the housing, and the conduit section of the housing is configured to pass through the second borehole of the end mass. The end mass is configured to compress the ultrasonic transducer against a surface of the housing when the end mass is engaged with the housing.Type: ApplicationFiled: December 1, 2023Publication date: May 23, 2024Inventors: Sora Rhee, Jacob S. Gee, Steven P. Smolik, Stephen J. Balek, William D. Dannaher
-
Patent number: 11883055Abstract: A surgical instrument includes a transducer assembly with a housing having a conduit section and a base portion. A fluid passageway is defined through the conduit and base portion, an ultrasonic transducer including a plurality of piezoelectric elements and a plurality of electrodes are arranged in a stack configuration, where an electrode is located between each pair of piezoelectric elements. A first borehole is defined through the ultrasonic transducer and an end mass having a second borehole defined therethrough. A surface of the end mass is positioned adjacent a first end of the ultrasonic transducer, the end mass is configured to engage with the housing, and the conduit section of the housing is configured to pass through the second borehole of the end mass. The end mass is configured to compress the ultrasonic transducer against a surface of the housing when the end mass is engaged with the housing.Type: GrantFiled: March 29, 2021Date of Patent: January 30, 2024Assignee: Cilag GmbH InternationalInventors: Sora Rhee, Jacob S. Gee, Steven P. Smolik, Stephen J. Balek, William D. Dannaher
-
Publication number: 20240009488Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a shield member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is movable toward the ultrasonic blade to compress tissue against the ultrasonic blade. The shield member is selectively movable from a first position to a second position in response to movement of the clamp arm toward the ultrasonic blade. The shield member is configured cover at least a first portion of the ultrasonic blade in the first position. The shield member is configured to uncover the first portion of the ultrasonic blade in the second position.Type: ApplicationFiled: September 20, 2023Publication date: January 11, 2024Inventors: Michael J. Stokes, Jacob S. Gee, Kevin D. Felder, Tylor C. Muhlenkamp, Patrick J. Scoggins, Craig N. Faller, Jeffrey D. Messerly, David J. Cagle, William B. Weisenburgh, II
-
Patent number: 11864786Abstract: Systems, devices, and methods are operable to track usage of a surgical instrument and modify the performance of the surgical instrument based on the prior usage of the surgical instrument. Some surgical instruments are designed to have a limited service life beginning at their first use, or a limit to their overall usage in order to ensure safe use of the sensitive instruments. However, a lack of ability to track usage characteristics when the instrument is separated from an external power supply allows for user abuse and avoidance of such safety mechanisms. Adding a battery or capacitor to the instrument may allow for an ability to track usage when the instrument is separated from an external power supply. Implementing special user prompts, device use ratios, and device use half-life upon powering down of an instrument may additionally be used to prevent circumvention of safety features.Type: GrantFiled: February 26, 2020Date of Patent: January 9, 2024Assignee: Cilag GmbH InternationalInventors: Craig N. Faller, Benjamin D. Dickerson, Jeffrey L. Aldridge, Jeffrey A. Bullock, Richard W. Timm, Ryan M. Asher, Timothy S. Holland, Craig T. Davis, Christina M. Hough, Cory G. Kimball, Ashvani K. Madan, David C. Yates, Shan Wan, Jacob S. Gee, Joseph E. Hollo, Chad P. Boudreaux, John B. Schulte, Tylor C. Muhlenkamp, Brian D. Black
-
Publication number: 20230355265Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.Type: ApplicationFiled: April 6, 2023Publication date: November 9, 2023Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
-
Patent number: 11801399Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a shield member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is movable toward the ultrasonic blade to compress tissue against the ultrasonic blade. The shield member is selectively movable from a first position to a second position in response to movement of the clamp arm toward the ultrasonic blade. The shield member is configured cover at least a first portion of the ultrasonic blade in the first position. The shield member is configured to uncover the first portion of the ultrasonic blade in the second position.Type: GrantFiled: June 2, 2020Date of Patent: October 31, 2023Assignee: Cilag GmbH InternationalInventors: Michael J. Stokes, Jacob S. Gee, Kevin D. Felder, Tylor C. Muhlenkamp, Patrick J. Scoggins, Craig N. Faller, Jeffrey D. Messerly, David J. Cagle, William B. Weisenburgh, II
-
Publication number: 20230329742Abstract: An apparatus configured for use with an end effector of a surgical instrument, comprising: (a) a housing, wherein the housing includes a first housing portion defining a first gap, wherein the first gap is configured to receive a jaw of the end effector; and (b) a lubricant application member positioned within the first gap, wherein the lubricant application member is configured to be loaded with a lubricant for applying the lubricant to a tissue clamping surface of the jaw when the jaw is received within the first gap.Type: ApplicationFiled: April 15, 2022Publication date: October 19, 2023Inventors: Steven M. Boronyak, Demetrius N. Harris, Patrick G. McElhaney, JR., Scott L. Johnson, Elie R. F. Laumond, Johnnie Bell, Maxwell T. Rockman, Jacob S. Gee, Jacqueline A. Anim, John E. Brady, Anna Peterson Wilson, Oscar R. Chavez Montes, Jeffrey L. Aldridge, Candice Otrembiak, Nicholas D. Schley, Stephen M. Torain, Chad P. Boudreaux, Kylie L. Hays, Rosa Castillo, Todd E. Riethmiller, Rachael A. Swenson, Louis P. Mingione, Monica L. Rivard, Justin M. Kovach, Mark E. Tebbe, Sean P. Conlon
-
Patent number: 11737750Abstract: A surgical instrument includes a body, a shaft assembly, and an end effector. The shaft assembly extends distally from the body. The end effector is located at a distal end portion of the shaft assembly. The end effector includes an active feature configured to operate on tissue. The body includes a drive feature operable to drive the active feature of the end effector. The body is removably coupled with the shaft assembly in a connected state and separated from the shaft assembly in a disconnected state. The body includes a drive feature configured to drive operation of the active feature of the effector. The drive feature includes at least one of an ultrasonic drive feature or a mechanical drive feature. A proximal end portion of the shaft assembly is configured to be removed from the body to separate the at least one activation feature from the drive feature.Type: GrantFiled: February 3, 2020Date of Patent: August 29, 2023Assignee: Cilag GmbH InternationalInventors: Jeffrey L. Aldridge, Eitan T. Wiener, Robert A. Kemerling, James R. Giordano, Vincent P. Battaglia, Jr., Daniel W. Price, Sean P. Conlon, Gregory W. Johnson, Jeffrey D. Messerly, Shan Wan, Kevin L. Houser, Foster B. Stulen, Jacob S. Gee, Jeffrey A. Bullock, John A. Hibner, William B. Weisenburgh, II