Patents by Inventor Jacob Sun
Jacob Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190052369Abstract: Techniques for high speed optoelectronic coupling by redirection of optical path are disclosed. In one particular embodiment, the techniques may be realized as an optoelectronic receiver comprising an optical signal demultiplexer that may be configured to transmit an optical signal along a first axis, and a photodiode that may be configured to convert the optical signal into an electrical signal, wherein the optical signal demultiplexer may include an inclined end surface that may be configured to reflect the optical signal towards a photoactive area of the photodiode at an obtuse angle of reflection with respect to the first axis.Type: ApplicationFiled: February 2, 2018Publication date: February 14, 2019Applicant: MACOM Technology Solutions Holdings, Inc.Inventors: Xian-Li YEH, Cecile V. COHEN-JONATHAN, Boris GREK, C. Jacob SUN
-
Patent number: 8137572Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.Type: GrantFiled: October 12, 2009Date of Patent: March 20, 2012Assignee: Enablence USA Components Inc.Inventors: HongZhen Wei, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
-
Patent number: 7933478Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.Type: GrantFiled: August 27, 2008Date of Patent: April 26, 2011Assignee: Enablence USA Components Inc.Inventors: HongZhen Wei, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
-
Publication number: 20100025361Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.Type: ApplicationFiled: October 12, 2009Publication date: February 4, 2010Inventors: HongZhen WEI, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
-
Patent number: 7639908Abstract: The invention is a data transmission device that includes: an input Free Propagation Region (FPR) receiving a multi-wavelength signal and a single-wavelength signal, and two sets of arrayed waveguides coupled to the input FPR to carry the multi-wavelength signal and the single-wavelength signal, respectively. The arrayed waveguides demultiplex the multi-wavelength signal and create copies of the single-wavelength signal. The output plane of an output FPR receives the demultiplexed wavelengths and the copies of the single-wavelength signal such that one of the demultiplexed wavelengths and one of the copies of the single-wavelength signal focus onto the same position on the output plane. The device allows data (e.g., video stream) to be broadcast to all subscribers in a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) architecture.Type: GrantFiled: January 23, 2008Date of Patent: December 29, 2009Assignee: Enablence USA Components, Inc.Inventors: Saurav Das, Boris Grek, Jacob Sun
-
Publication number: 20090214170Abstract: A method of making a planar lightwave circuit (PLC) waveguide capable of being integrated with a surface-mounted component is presented. The method entails etching a silicon substrate to form a slanted wall, forming a nonreflective waveguide portion on the silicon substrate, and depositing a reflective layer on the slanted wall. Light travels through the nonreflective waveguide portion in substantially a first direction, and the light from the nonreflective waveguide portion strikes the reflective layer to be redirected in a second direction. The second direction may be the direction toward the surface-mounted component. A PLC waveguide device made with the above method is also presented.Type: ApplicationFiled: August 27, 2008Publication date: August 27, 2009Inventors: HongZhen Wei, Ray Liang, Wenhua Lin, Ted Chen, Jacob Sun
-
Publication number: 20090185806Abstract: The invention is a data transmission device that includes: an input Free Propagation Region (FPR) receiving a multi-wavelength signal and a single-wavelength signal, and two sets of arrayed waveguides coupled to the input FPR to carry the multi-wavelength signal and the single-wavelength signal, respectively. The arrayed waveguides demultiplex the multi-wavelength signal and create copies of the single-wavelength signal. The output plane of an output FPR receives the demultiplexed wavelengths and the copies of the single-wavelength signal such that one of the demultiplexed wavelengths and one of the copies of the single-wavelength signal focus onto the same position on the output plane. The device allows data (e.g., video stream) to be broadcast to all subscribers in a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) architecture.Type: ApplicationFiled: January 23, 2008Publication date: July 23, 2009Inventors: Saurav Das, Boris Grek, Jacob Sun
-
Patent number: 7008551Abstract: A method for forming optical devices on-planar substrates, as well as optical devices formed by the method are described. The method uses a linear injection APCVD process to form optical waveguide devices on planar substrates. The method is performed at approximately atmospheric pressure. According to the method, a wafer with a lower cladding layer already formed by either CVD or oxidation is placed on a conveyer, which may include a heating element. The heated wafer is transported underneath a linear injector such that the chemicals from the linear injector react on the wafer surface to form a core layer. After the core layer is formed, photoresist is spun on the surface of the wafer, and then standard lithography is used to pattern the optical devices. Next, reactive ion etching (RIE) is used to form waveguide lines. The remaining photoresist is then removed. An upper cladding layer is formed to substantially cover the core regions.Type: GrantFiled: April 30, 2003Date of Patent: March 7, 2006Assignee: Andevices, Inc.Inventors: C. Jacob Sun, James K. Eu
-
Publication number: 20040022490Abstract: A filter module that includes a filter, such as an AWG filter, and a semiconductor optical amplifier (SOA) is described. Additionally, a method of multiplexing and/or demultiplexing optical signals using the DWDM filter module is described. The filter and SOA can be integrated together either through compact packaging (with fiber and connectors), or through on-chip integration. The SOA can fully compensate for the insertion loss due to, for example, an AWG filter or plurality of AWG filters. Additionally, the polarization dependent loss of the composite module can be reduced by adjusting the polarization dependent gain of the SOA to compensate for the polarization dependent loss of the AWG filter.Type: ApplicationFiled: July 18, 2003Publication date: February 5, 2004Inventors: James K. Eu, Tong-Ning Li, C. Jacob Sun
-
Publication number: 20030201243Abstract: A method for forming optical devices on-planar substrates, as well as optical devices formed by the method are described. The method uses a linear injection APCVD process to form optical waveguide devices on planar substrates. The method is performed at approximately atmospheric pressure. According to the method, a wafer with a lower cladding layer already formed by either CVD or oxidation is placed on a conveyer, which may include a heating element. The heated wafer is transported underneath a linear injector such that the chemicals from the linear injector react on the wafer surface to form a core layer. After the core layer is formed, photoresist is spun on the surface of the wafer, and then standard lithography is used to pattern the optical devices. Next, reactive ion etching (RIE) is used to form waveguide lines. The remaining photoresist is then removed. An upper cladding layer is formed to substantially cover the core regions.Type: ApplicationFiled: April 30, 2003Publication date: October 30, 2003Inventors: C. Jacob Sun, James K. Eu
-
Publication number: 20020092824Abstract: A method for forming optical devices on planar substrates, as well as optical devices formed by the method are described. The method uses a linear injection APCVD process to form optical waveguide devices on planar substrates. The method is performed at approximately atmospheric pressure. According to the method, a wafer with a lower cladding layer already formed by either CVD or oxidation is placed on a conveyer, which may include a heating element. The heated wafer is transported underneath a linear injector such that the chemicals from the linear injector react on the wafer surface to form a core layer. After the core layer is formed, photoresist is spun on the surface of the wafer, and then standard lithography is used to pattern the optical devices. Next, reactive ion etching (RIE) is used to form waveguide lines. The remaining photoresist is then removed. An upper cladding layer is formed to substantially cover the core regions.Type: ApplicationFiled: January 18, 2001Publication date: July 18, 2002Inventors: C. Jacob Sun, James K. Eu
-
Patent number: 5432877Abstract: A method and apparatus are disclosed whereby integrated optical circuits having waveguide ends of lens geometry are formed which improve the waveguide's optical coupling to light sources and detectors. A channel waveguide is formed on a substrate and the waveguide ends are shaped into lens form by etching to form a protrusion and heating the waveguide to or above the softening temperature of core material of the waveguide resulting in surface tension in the core material that functions to shape the protrusion into a substantially cone-shaped lens end having a smooth surface.Type: GrantFiled: June 3, 1994Date of Patent: July 11, 1995Assignee: Photonic Integration Research, Inc.Inventors: C. Jacob Sun, Paul Davidson, Shin Sumida
-
Patent number: 5242478Abstract: An optical waveguide forming process is disclosed which enables glass waveguides to be deposited on metalized substrates without substantial degradation of the wiring of the substrate. The process involves the use of carbon material to protect the metal wiring on or embedded in the substrate during the consolidation phase of the waveguide formation. The carbon plate reacts readily with oxygen impurities to control the oxygen partial Pressure during the consolidation phase.Type: GrantFiled: December 19, 1991Date of Patent: September 7, 1993Assignee: Photonic Integration Research, Inc.Inventor: C. Jacob Sun