Patents by Inventor Jacob W. Smith

Jacob W. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094233
    Abstract: The present invention relates to methods, devices and systems for associating consumable data with an assay consumable used in a biological assay. Provided are assay systems and associated consumables, wherein the assay system adjusts one or more steps of an assay protocol based on consumable data specific for that consumable. Various types of consumable data are described, as well as methods of using such data in the conduct of an assay by an assay system. The present invention also relates to consumables (e.g., kits and reagent containers), software, data deployable bundles, computer-readable media, loading carts, instruments, systems, and methods, for performing automated biological assays.
    Type: Application
    Filed: July 18, 2023
    Publication date: March 21, 2024
    Inventors: Jacob N. WOHLSTADTER, Manish KOCHAR, Peter J. BOSCO, Ian D. CHAMBERLIN, Bandele JEFFREY-COKER, Eric M. JONES, Gary I. KRIVOY, Don E. KRUEGER, Aaron H. LEIMKUEHLER, Pei-Ming WU, Kim-Xuan NGUYEN, Pankaj OBEROI, Louis W. PANG, Jennifer PARKER, Victor PELLICIER, Nicholas SAMMONS, George SIGAL, Michael L. VOCK, Stanley T. SMITH, Carl C. STEVENS, Rodger D. OSBORNE, Kenneth E. PAGE, Michael T. WADE, Jon WILLOUGHBY, Lei WANG, Xinri CONG, Kin NG
  • Publication number: 20240076875
    Abstract: A shingle coating asphalt composition is provided that is produced from a paving grade asphalt. The asphalt composition comprises a paving-grade asphalt that has been modified with one or more polymer additives; and a secondary additive comprising one or more of a viscosity reducing agent, a wax, a salt of a fatty acid ester, and an amide of a fatty acid. The shingle coating asphalt coating composition is used to make a shingle. The shingle includes a substrate, the asphalt, and roofing granules.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Inventors: Carmen Anthony LaTorre, Jacob Paul Honsvick, Christopher Patrick Kasprzak, Daniel James Buckwalter, Edward R. Harrington, Jonathan Ross Davis, Laurand Henry Lewandowski, David Michael Ploense, William Edwin Smith, Scott W. Schweiger, Ganesh Latta
  • Patent number: 9892941
    Abstract: Apparatus, reactors, and methods for heating substrates are disclosed. The apparatus comprises a stage comprising a body and a surface having an area to support a substrate, a shaft coupled to the stage, a first heating element disposed within a central region of the body of the stage, and at least second and third heating elements disposed within the body of the stage, the at least second and third heating elements each partially surrounding the first heating element and wherein the at least second and third heating elements are circumferentially adjacent to each other.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: February 13, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Anqing Cui, Binh Tran, Alexander Tam, Jacob W. Smith, R. Suryanarayanan Iyer, Joseph Yudovsky, Sean M. Seutter
  • Patent number: 9847634
    Abstract: An arc flash protection device including a sensor, a timer, and a controller. The sensor is configured to detect a presence of at least one entity or arc flash protection qualifying event in proximity to the generator set. The controller is configured to initiate an arc flash protection regime when the presence of the at least one person or arc flash protection qualifying event is detected in proximity to the generator set. The arc flash protection regime includes shutting down the generator set automatically upon detection of a short circuit.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: December 19, 2017
    Assignees: Cummins Power Generation IP, Inc., Cumming Power Generation Ltd. (UK)
    Inventors: Jacob W. Smith, Brian B. Brady, Glaucio G. De Oliveira, Ahmed Nazmul Jaffer, Richard Meadows
  • Publication number: 20170070043
    Abstract: An arc flash protection device including a sensor, a timer, and a controller. The sensor is configured to detect a presence of at least one entity or arc flash protection qualifying event in proximity to the generator set. The controller is configured to initiate an arc flash protection regime when the presence of the at least one person or arc flash protection qualifying event is detected in proximity to the generator set. The arc flash protection regime includes shutting down the generator set automatically upon detection of a short circuit.
    Type: Application
    Filed: February 19, 2015
    Publication date: March 9, 2017
    Applicants: Cummins Power Generation Ip, Inc., Cummins Power Generation Ltd.(UK)
    Inventors: Jacob W. Smith, Brian B. Brady, Glaucio G. De Oliveira, Ahmed Nazmul Jaffer, Richard Meadows
  • Patent number: 7781016
    Abstract: Methods are disclosed of determining a fill level of a precursor in a bubbler. The bubbler is fluidicly coupled with a substrate processing chamber through a vapor-delivery system. The bubbler and vapor-delivery system are backfilled with a known dose of a backfill gas. A pressure and temperature of the backfill gas are determined, permitting a total volume for the backfill gas in the bubbler and vapor-delivery system to be determined by application of a gas law. The fill level of the precursor in the bubbler is determined as a difference between (1) a total volume of the bubbler and vapor-delivery system and (2) the determined total volume for the backfill gas.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Ronald Stevens, Brendan McDougall, Jacob W. Smith, Garry Kwong, Sandeep Nijhawan, Lori D. Washington
  • Publication number: 20090314762
    Abstract: Apparatus, reactors, and methods for heating substrates are disclosed. The apparatus comprises a stage comprising a body and a surface having an area to support a substrate, a shaft coupled to the stage, a first heating element disposed within a central region of the body of the stage, and at least second and third heating elements disposed within the body of the stage, the at least second and third heating elements each partially surrounding the first heating element and wherein the at least second and third heating elements are circumferentially adjacent to each other.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 24, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Anqing Cui, Binh Tran, Alexander Tam, Jacob W. Smith, R. Suryanarayanan Iyer, Joseph Yudovsky, Sean M. Seutter
  • Patent number: 7585769
    Abstract: A method of suppressing parasitic particle formation in a metal organic chemical vapor deposition process is described. The method may include providing a substrate to a reaction chamber, and introducing an organometallic precursor, a particle suppression compound and at least a second precursor to the reaction chamber. The second precursor reacts with the organometallic precursor to form a nucleation layer on the substrate. Also, a method of suppressing parasitic particle formation during formation of a III-V nitride layer is described. The method includes introducing a group III metal containing precursor to a reaction chamber. The group III metal precursor may include a halogen. A hydrogen halide gas and a nitrogen containing gas are also introduced to the reaction chamber. The nitrogen containing gas reacts with the group III metal precursor to form the III-V nitride layer on the substrate.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: September 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Jacob W. Smith, Sandeep Nijhawan, Lori D. Washington, David Eaglesham
  • Patent number: 7488690
    Abstract: An assembly comprises a multilayer nitride stack having nitride etch stop layers formed on top of one another, each of the nitride etch stop layers is formed using a film forming process. A method of making the multilayer nitride stack includes placing a substrate in a single wafer deposition chamber and thermally shocking the substrate momentarily prior to deposition. A first nitride etch stop layer is deposited over the substrate. A second nitride etch stop layer is deposited over the first nitride etch stop layer.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: February 10, 2009
    Assignee: Applied Materials, Inc.
    Inventors: R. Suryanarayanan Iyer, Andrew M. Lam, Yuji Maeda, Thomas Mele, Jacob W. Smith, Sean M. Seutter, Sanjeev Tandon, Randhir P. Singh Thakur, Sunderraj Thirupapuliyur
  • Patent number: 7416995
    Abstract: A method for fabricating a multiple layer silicon nitride film on a semiconductor substrate is provided herein. In one embodiment, a method for fabricating a multiple layer silicon nitride film on a semiconductor substrate includes providing a substrate over which the multiple layer silicon nitride film is to be formed; and forming the multiple layer silicon nitride film in a single processing reactor by: (a) depositing a base layer comprising silicon nitride on the base structure; (b) depositing a middle layer comprising a stress-controlling material on the base layer; and (c) depositing a top layer comprising silicon nitride on the middle layer. The stress-controlling material selectively increases or reduces the stress of the multiple layer silicon nitride film as compared to silicon nitride alone.
    Type: Grant
    Filed: November 12, 2005
    Date of Patent: August 26, 2008
    Assignee: Applied Materials, Inc.
    Inventors: R. Suryanarayanan Iyer, Sanjeev Tandon, Jacob W. Smith
  • Publication number: 20080124453
    Abstract: Systems and methods for in-situ monitoring of the formation of parasitic particles during the deposition of a III-V nitride film with, e.g., metal-organic chemical vapor deposition (MOCVD) are described. In accordance with certain embodiments, at least one light source capable of generating a light beam at a desired wavelength is positioned relative to a reaction chamber so as to pass a light beam into the reaction chamber. Multiple optical detectors capable of detecting light from the beam are positioned relative to the reaction chamber to monitor desired reaction and growth conditions. More particularly, a first optical detector is positioned so as to detect light reflected from a deposition surface within the reaction chamber so as to monitor growth rate and/or composition of a film during deposition.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 29, 2008
    Applicant: Applied Matrials, Inc.
    Inventors: DAVID BOUR, Ronald P. Stevens, Jacob W. Smith, Sandeep Nijhawan
  • Publication number: 20080124817
    Abstract: Methods and systems are provided of fabricating a compound nitride semiconductor structure. A substrate is disposed within a processing chamber into which a group-III precursor and a nitrogen precursor are flowed. A layer is deposited over the substrate with a thermal chemical-vapor-deposition process using the precursors. The substrate is transferred to a transfer chamber where a temperature and a curvature of the layer are measured. The substrate is then transferred to a second processing chamber where a second layer is deposited.
    Type: Application
    Filed: August 23, 2006
    Publication date: May 29, 2008
    Applicant: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Lori D. Washington, Jacob W. Smith
  • Publication number: 20080119059
    Abstract: Methods for low thermal budget silicon dioxide chemical vapor deposition in single-wafer chambers are provided. In semiconductor manufacturing, Si2H6-based oxide deposition is worthy of consideration as a viable alternative to higher temperature thermal CVD processes. A process of forming a film on a substrate is provided, the process comprising: placing a substrate in a thermal low-pressure chemical vapor deposition single-wafer chamber; flowing disilane (Si2H6) into the chamber; flowing nitrous oxide (N2O) into the chamber at a ratio of at least approximately 300:1 N2O:Si2H6; heating the chamber at a temperature of from approximately 450° C. to approximately 550° C.; and forming the film on the substrate, wherein the film comprises silicon dioxide (SiO2).
    Type: Application
    Filed: November 20, 2006
    Publication date: May 22, 2008
    Inventors: Jacob W. Smith, R. Suryanarayanan Iyer, Yuji Maeda
  • Patent number: 7374960
    Abstract: Methods and systems are provided of fabricating a compound nitride semiconductor structure. A substrate is disposed within a processing chamber into which a group-III precursor and a nitrogen precursor are flowed. A layer is deposited over the substrate with a thermal chemical-vapor-deposition process using the precursors. The substrate is transferred to a transfer chamber where a temperature and a curvature of the layer are measured. The substrate is then transferred to a second processing chamber where a second layer is deposited.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: May 20, 2008
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Lori D. Washington, Jacob W. Smith
  • Publication number: 20080050510
    Abstract: Methods are disclosed of determining a fill level of a precursor in a bubbler. The bubbler is fluidicly coupled with a substrate processing chamber through a vapor-delivery system. The bubbler and vapor-delivery system are backfilled with a known dose of a backfill gas. A pressure and temperature of the backfill gas are determined, permitting a total volume for the backfill gas in the bubbler and vapor-delivery system to be determined by application of a gas law. The fill level of the precursor in the bubbler is determined as a difference between (1) a total volume of the bubbler and vapor-delivery system and (2) the determined total volume for the backfill gas.
    Type: Application
    Filed: August 23, 2006
    Publication date: February 28, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Ronald Stevens, Brendan McDougall, Jacob W. Smith, Garry Kwong, Sandeep Nijhawan, Lori D. Washington