Patents by Inventor Jacob Zerby

Jacob Zerby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10749201
    Abstract: A regenerative fuel cell produces hydrogen that is stored in a reservoir on the storage side of a membrane electrode assembly when operating in a hydrogen pumping mode and this stored hydrogen is reacted and moved back through the membrane electrode assembly to form water when operating in a fuel cell mode. A metal hydride forming alloy may be configured in the hydrogen storage reservoir and may be coupled to the membrane electrode assembly. An integral metal hydride electrode having a metal hydride forming alloy may be configured on the storage side of the membrane electrode assembly and may have a catalyst or an ion conductive media incorporated therewith.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: August 18, 2020
    Assignee: Xergy Inc.
    Inventors: Bamdad Bahar, Jacob Zerby, Scott Fackler
  • Publication number: 20200001230
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 2, 2020
    Inventors: Bamdad Bahar, Kryiacos Zachary, Jacob Zerby
  • Publication number: 20190264341
    Abstract: An environment control system utilizes oxygen and humidity control devices that, are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 29, 2019
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20190256384
    Abstract: A water purification system utilizes an ionomer membrane and mild vacuum to draw water from source water through the membrane. A water source may be salt water or a contaminated water source. The water drawn through the membrane passes across the condenser chamber to a condenser surface where it is condensed into purified water. The condenser surface may be metal or any other suitable surface and may be flat or pleated. In addition, the condenser surface may be maintained at a lower temperature than the water on the water source side of the membrane. The ionomer membrane may be configured in a cartridge, a pleated or flat plate configuration. A latent heat loop may be configured to carry the latent heat of vaporization from the condenser back to the water source side of the ionomer membrane. The source water may be heated by a solar water heater.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 22, 2019
    Inventors: Bamdad Bahar, Luyu Jin, William Parmelee, Jacob Zerby
  • Publication number: 20190192806
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccatting device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount voltage and or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20190151796
    Abstract: An electrochemical system utilizes an anion conducting layer disposed between an anode and a cathode for transporting a working fluid. The working fluid may include carbon dioxide that is dissolved in water and is partially converted to carbonic acid that is equilibrium with bicarbonate anion. An electrical potential across the anode and cathode creates a pH gradient that drives the bicarbonate anion across the anion conducting layer to the cathode, wherein it is reformed into carbon dioxide. Therefore, carbon dioxide is pumped across the anion conducting layer.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20190100844
    Abstract: An environment control system utilizes oxygen and humidity control devices that are coupled with an enclosure to independently control the oxygen concentration and the humidity level within the enclosure. An oxygen depletion device may be an oxygen depletion electrolyzer cell that reacts with oxygen within the cell and produces water through electrochemical reactions. A desiccating device may be g, a dehumidification electrolyzer cell, a desiccator, a membrane desiccator or a condenser. A controller may control the amount of voltage and/or current provided to the oxygen depletion electrolyzer cell and therefore the rate of oxygen reduction and may control the amount of voltage and/or current provided to the dehumidification electrolyzer cell and therefore the rate of humidity reduction. The oxygen level may be determined by the measurement of voltage and a limiting current of the oxygen depletion electrolyzer cell. The enclosure may be a food or artifact enclosure.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Bamdad Bahar, Jacob Zerby, Zhefei Li, William Parmelee
  • Patent number: 10202292
    Abstract: A water purification system utilizes an ionomer membrane and mild vacuum to draw water from source water through the membrane. A water source may be salt water or a contaminated water source. The water drawn through the membrane passes across the condenser chamber to a condenser surface where it is condensed into purified water. The condenser surface may be metal or any other suitable surface and may be flat or pleated. In addition, the condenser surface may be maintained at a lower temperature than the water on the water source side of the membrane. The ionomer membrane may be configured in a cartridge, a pleated or flat plate configuration. A latent heat loop may be configured to carry the latent heat of vaporization from the condenser back to the water source side of the ionomer membrane. The source water may be heated by a solar water heater.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: February 12, 2019
    Assignee: Xergy LTD
    Inventors: Bamdad Bahar, Luyu Jin, William Parmelee, Jacob Zerby
  • Publication number: 20180351193
    Abstract: A regenerative fuel cell produces hydrogen that is stored in a reservoir on the storage side of a membrane electrode assembly when operating in a hydrogen pumping mode and this stored hydrogen is reacted and moved back through the membrane electrode assembly to form water when operating in a fuel cell mode. A metal hydride forming alloy may be configured in the hydrogen storage reservoir and may be coupled to the membrane electrode assembly. An integral metal hydride electrode having a metal hydride forming alloy may be configured on the storage side of the membrane electrode assembly and may have a catalyst or an ion conductive media incorporated therewith.
    Type: Application
    Filed: August 6, 2018
    Publication date: December 6, 2018
    Inventors: Bamdad Bahar, Jacob Zerby, Scott Fackler
  • Publication number: 20180202054
    Abstract: An electrochemical oxygen pump moves or pumps oxygen molecules with a unique anion conducting layer comprising an anion conducting polymer. These pumps can either be used as high precision oxygen flow meters or as oxygen filters. The system can be plumbed to have air as the inlet and the pump will, selectively pump oxygen out, offering another way to remove oxygen from the air, along with distillation or pressure swing absorption.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Bamdad Bahar, Zhefei Li, Richard Sherrer, Jacob Zerby
  • Publication number: 20170370013
    Abstract: An ozone generator system utilizes an electrochemical cell to produce and control ozone concentrations within an enclosure or to supply ozone to a flow conduit. The enclosure may he coupled with a flow conduit that carries the produced ozone to a desired location. An enclosure may be a sterilization chamber and the concentration of ozone produced by the ozone generating system may be sufficient to sterilize articles within the enclosure. An oxygen control electrolyzer cell and/or humidity control electrolyzer cell may be coupled with the enclosure to further control the environment of the enclosure. A humidity control electrolyzer cell may be fluidly coupled with the ozone generator to supply humidity for reaction on the anode of the ozone generator.
    Type: Application
    Filed: September 8, 2017
    Publication date: December 28, 2017
    Inventors: Bamdad Bahar, Jacob Zerby
  • Publication number: 20170113950
    Abstract: A water purification system utilizes an ionomer membrane and mild vacuum to draw water from source water through the membrane. A water source may be salt water or a contaminated water source. The water drawn through the membrane passes across the condenser chamber to a condenser surface where it is condensed into purified water. The condenser surface may be metal or any other suitable surface and may be flat or pleated. In addition, the condenser surface may be maintained at a lower temperature than the water on the water source side of the membrane. The ionomer membrane may be configured in a cartridge, a pleated or flat plate configuration. A latent heat loop may be configured to carry the latent heat of vaporization from the condenser back to the water source side of the ionomer membrane. The source water may be heated by a solar water heater.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Inventors: Bamdad Bahar, Luyu Jin, William Parmelee, Jacob Zerby