Patents by Inventor Jacobus Johannes Mencke

Jacobus Johannes Mencke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230366129
    Abstract: Process for spinning multifilament yarn containing n filaments are provided, wherein an ultra-high molecular weight polyethylene (UHMWPE) solution containing UHMWPE polymer and a solvent for the UHMWPE polymer are spun through n spin-holes of a spin plate and drawn before, during or after removal of the solvent to thereby obtain the multifilament yarn containing n filaments, the yarn having a tenacity (Ten) as expressed in cN/dtex of Ten(eN/dtex) = f×n-0.05×dpf-0.15, wherein Ten is at least 39 cN/dtex, n is at least 25, f is a factor of at least 62.0 and dpf is the dtex per filament.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 16, 2023
    Inventors: Jacobus Johannes MENCKE, Johannes Hendrikus Marie HEIJNEN, Harm VAN DER WERFF
  • Patent number: 11746442
    Abstract: Multifilament yarn containing n filaments are provided, wherein the filaments are obtained by spinning an ultra-high molecular weight polyethylene (UHMWPE), said yarn having a tenacity (Ten) as expressed in cN/dtex of Ten(cN/dtex)=f×n?0.05×dpf?0.15, wherein Ten is at least 39 cN/dtex, n is at least 25, f is a factor of at least 58 and dpf is the dtex per filament.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: September 5, 2023
    Assignee: AVIENT PROTECTIVE MATERIALS B.V.
    Inventors: Jacobus Johannes Mencke, Johannes Hendrikus Marie Heijnen, Harm Van Der Werff
  • Patent number: 11661678
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: May 30, 2023
    Assignee: AVIENT PROTECTIVE MATERIALS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Patent number: 11505879
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: November 22, 2022
    Assignee: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Publication number: 20220143950
    Abstract: Multifilament yarn containing n filaments are provided, wherein the filaments are obtained by spinning an ultra-high molecular weight polyethylene (UHMWPE), said yarn having a tenacity (Ten) as expressed in cN/dtex of Ten(cN/dtex)=f×n?0.05×dpf ?0.15, wherein Ten is at least 39 cN/dtex, n is at least 25, f is a factor of at least 58 and dpf is the dtex per filament.
    Type: Application
    Filed: December 14, 2021
    Publication date: May 12, 2022
    Inventors: Jacobus Johannes MENCKE, Johannes Hendrikus Marie HEIJNEN, Harm VAN DER WERFF
  • Patent number: 11230797
    Abstract: The invention relates to a multifilament yarn containing n filaments, wherein the filaments are obtained by spinning an ultra-high molecular weight polyethylene (UHMWPE), said yarn having a tenacity (Ten) as expressed in cN/dtex of Ten(cN/dtex)=f×n?0.05×dpf?0.15, wherein Ten is at least 39 cN/dtex, n is at least 25, f is a factor of at least 58 and dpf is the dtex per filament.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: January 25, 2022
    Assignee: DSM IP ASSETS B.V.
    Inventors: Jacobus Johannes Mencke, Johannes Hendrikus Marie Heijnen, Harm Van Der Werff
  • Publication number: 20220018040
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Application
    Filed: June 1, 2021
    Publication date: January 20, 2022
    Inventors: Joseph Arnold Paul Maria SIMMELINK, Jacobus Johannes MENCKE, Martinus Johannes Nicolaas JACOBS, Roeloef MARISSEN
  • Publication number: 20200299866
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Inventors: Joseph Arnold Paul Maria SIMMELINK, Jacobus Johannes MENCKE, Martinus Johannes Nicolaas JACOBS, Roeloef MARISSEN
  • Patent number: 10711375
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: July 14, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Patent number: 10612892
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 7, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Patent number: 10557690
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: February 11, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Patent number: 10557689
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: February 11, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Publication number: 20190212100
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Inventors: Joseph Arnold Paul Maria SIMMELINK, Jacobus Johannes MENCKE, Martinus Johannes Nicolaas JACOBS, Roeloef MARISSEN
  • Publication number: 20190212099
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Inventors: Joseph Arnold Paul Maria SIMMELINK, Jacobus Johannes MENCKE, Martinus Johannes Nicolaas JACOBS, Roeloef MARISSEN
  • Publication number: 20190212098
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Application
    Filed: March 14, 2019
    Publication date: July 11, 2019
    Inventors: Joseph Arnold Paul Maria SIMMELINK, Jacobus Johannes MENCKE, Martinus Johannes Nicolaas JACOBS, Roeloef MARISSEN
  • Patent number: 9903689
    Abstract: The invention relates to a multilayered material sheet comprising a consolidated stack of unidirectional monolayers of drawn polymer. The draw direction of two subsequent monolayers in the stack differs. Moreover the strength to thickness ratio of at least one monolayer is larger than 4.5.1013 N/m3. The invention also relates to a ballistic resistant article comprising the multilayered material sheet and to a process for the preparation of the ballistic resistant article.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: February 27, 2018
    Assignee: DSM IP ASSETS B.V.
    Inventors: Roelof Marissen, Joseph Arnold Paul Maria Simmelink, Reinard Jozef Maria Steeman, Gijsbertus Hendrikus Maria Calis, Jacobus Johannes Mencke, Jean Hubert Marie Beugels, David Vanek, Johann Van Elburg, Alexander Volker Peters, Steen Tanderup, Marko Dorschu
  • Patent number: 9863742
    Abstract: The invention relates to ballistic resistant article having a multilayered material sheet which includes a consolidated stack of unidirectional monolayers of drawn polymer, whereby the draw direction of two subsequent monolayers in the stack differs. At least one monolayer comprises a plurality of unidirectional tapes of the drawn polymer, aligned in the same direction, whereby adjacent tapes do not overlap. The invention also relates to a process for the preparation of the multilayered material sheet, and to a ballistic resistant article comprising the multilayered material sheet.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: January 9, 2018
    Assignee: DSM IP ASSETS B.V.
    Inventors: Roelof Marissen, Joseph Arnold Paul Maria Simmelink, Reinard Jozef Maria Steeman, Gijsbertus Hendrikus Maria Calis, Jacobus Johannes Mencke, Jean Hubert Marie Beugels, David Vanek, Johann Van Elburg, Alexander Volker Peters, Steen Tanderup, Marko Dorschu
  • Publication number: 20170370681
    Abstract: Processes for making high-performance polyethylene multi-filament yarn are disclosed which include the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Dn with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp* DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 28, 2017
    Inventors: Joseph Arnold Paul Maria SIMMELINK, Jacobus Johannes MENCKE, Martinus Johannes Nicolaas JACOBS, Roeloef MARISSEN
  • Patent number: 9759525
    Abstract: The invention relates to a process for making high-performance polyethylene multi-filament yarn comprising the steps of a) making a solution of ultra-high molar mass polyethylene in a solvent; b) spinning of the solution through a spinplate containing at least 5 spinholes into an air-gap to form fluid filaments, while applying a draw ratio DRfluid; c) cooling the fluid filaments to form solvent-containing gel filaments; d) removing at least partly the solvent from the filaments; and e) drawing the filaments in at least one step before, during and/or after said solvent removing, while applying a draw ratio DRsolid of at least 4, wherein in step b) each spinhole comprises a contraction zone of specific dimension and a downstream zone of diameter Dn and length Ln with Ln/Dn of from 0 to at most 25, to result in a draw ratio DRfluid=DRsp*DRag of at least 150, wherein DRsp is the draw ratio in the spinholes and DRag is the draw ratio in the air-gap, with DRsp being greater than 1 and DRag at least 1.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: September 12, 2017
    Assignee: DSM IP ASSETS B.V.
    Inventors: Joseph Arnold Paul Maria Simmelink, Jacobus Johannes Mencke, Martinus Johannes Nicolaas Jacobs, Roeloef Marissen
  • Patent number: 9702664
    Abstract: The invention relates to a multilayered material sheet comprising a consolidated stack of unidirectional monolayers of drawn polymer, whereby the draw direction of two subsequent monolayers in the stack differs. At least one monolayer comprises a plurality of unidirectional tapes of the drawn polymer, aligned in the same direction, whereby adjacent tapes do not overlap. The invention also relates to a process for the preparation of the multilayered material sheet, and to a ballistic resistant article comprising the multilayered material sheet.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: July 11, 2017
    Assignee: DSM IP ASSETS B.V.
    Inventors: Roelof Marissen, Joseph Arnold Paul Maria Simmelink, Reinard Jozef Maria Steeman, Gijsbertus Hendrikus Maria Calis, Jacobus Johannes Mencke, Jean Hubert Marie Beugels, David Vanek, Johann Van Elburg, Alexander Volker Peters, Steen Tanderup, Marko Dorschu