Patents by Inventor Jacotin Romain

Jacotin Romain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11075889
    Abstract: The system comprises a sending entity (100) and a receiving entity (200). The sending entity (100) is suitable for generating a random mask (MA) with m bits; applying an XOR operation between the raw data block to be encrypted (T) and the random mask (MA) thus generated to obtain a primary encrypted block (CPV) with m bits; and applying a permutation (PE) on the concatenation of the random mask (MA) and the primary encrypted block (CPV) to obtain a secondary encrypted block (CS). The receiving entity (200) is suitable for receiving the secondary encrypted block (CS) of 2*m bits; applying an inverse permutation (PI) on the secondary encrypted block thus received to obtain the de-concatenation of a random mask (MA) and a primary encrypted block (CPV) with m bits; and applying an XOR operation between the primary encrypted block (CPV) and the random mask (MA) thus de-concatenated to obtain a block in clear (T) with m bits.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 27, 2021
    Assignee: IPCEPTION
    Inventor: Jacotin Romain
  • Publication number: 20190166105
    Abstract: The system comprises a sending entity (100) and a receiving entity (200). The sending entity (100) is suitable for generating a random mask (MA) with m bits; applying an XOR operation between the raw data block to be encrypted (T) and the random mask (MA) thus generated to obtain a primary encrypted block (CPV) with m bits; and applying a permutation (PE) on the concatenation of the random mask (MA) and the primary encrypted block (CPV) to obtain a secondary encrypted block (CS). The receiving entity (200) is suitable for receiving the secondary encrypted block (CS) of 2*m bits; applying an inverse permutation (PI) on the secondary encrypted block thus received to obtain the de-concatenation of a random mask (MA) and a primary encrypted block (CPV) with m bits; and applying an XOR operation between the primary encrypted block (CPV) and the random mask (MA) thus de-concatenated to obtain a block in clear (T) with m bits.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 30, 2019
    Inventor: Jacotin Romain