Patents by Inventor Jacqueline C Aronhalt
Jacqueline C Aronhalt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240108337Abstract: A surgical system is disclosed including a surgical instrument and a control system. The surgical instrument comprises an end effector, a first drive system, and a second drive system. The control system is configured to detect the actuation of the first drive system of the surgical instrument, drive a first function of the end effector using the first drive system, monitor a first parameter associated with a first function, set a second parameter associated with a second function of the end effector based on the monitored first parameter, and drive the second function of the end effector using the second drive system.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Inventors: Frederick E. Shelton, IV, Shane R. Adams, Jacqueline C. Aronhalt, Kevin M. Fiebig
-
Publication number: 20240108334Abstract: Methods, devices, and systems for controlling a tissue-treatment motion by a surgical instrument are disclosed.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Michael J. Vendely, Shane R. Adams, Nicholas J. Ross, Matthew D. Cowperthwait, Jason L. Harris, Kevin M. Fiebig, Eric B. LaFay, Jose Luis De Cordoba Matilla, Raymond E. Parfett, Curtis A. Maples, Sarah A. Worthington, Jacqueline C. Aronhalt
-
Publication number: 20240000476Abstract: A surgical kit and related methods of assembly and disassembly include a surgical instrument having an end effector, a shaft assembly, and a body assembly. The surgical instrument includes a predetermined access portion configured to be at least partially removed for accessing an interior therein. The surgical kit also includes an instrument tool assembly with a tool body, a torque wrench connected to the tool body, and a removal portion for gaining access to the interior of the surgical instrument.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, Cameron D. McLain
-
Publication number: 20240003820Abstract: A method of determining a recovery capacity of at least one feature of a surgical instrument includes establishing communication with the surgical instrument; assisting operation of the surgical instrument during a procedure; obtaining data related to the surgical instrument; evaluating the data obtained related to the surgical instrument to determine a digital assessment of the impact on performance of the at least one features of the surgical instrument; and determining, based on the digital assessment, a capacity of recovery for the at least one feature of the surgical instrument.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Matthew E. Derrico, Cameron D. McLain, Bruce Brunson, Gregory A. Trees
-
Publication number: 20240006048Abstract: A method of reclaiming portions of a surgical kit having a surgical instrument includes disassembling the surgical instrument and determining a disposal methodology of the surgical kit. Furthermore, reclaiming further includes verifying reuse capacity of a portion of the surgical instrument and determining a waste stream for the portion of the surgical instrument. The method also includes disassembling the portion of the surgical instrument from a remainder of the surgical instrument at a predetermined region of the surgical instrument to thereby reclaim the portion of the surgical instrument according to the waste stream.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, David A. Bruns, Bruce Brunson, JR., Ellen Burkart, Robert N. Carranza, Matthew D. Cowperthwait, Aaron J. Chow, Matthew E. Derrico, Kevin M. Fiebig, Guion Y. Lucas, Cameron D. McLain, Joseph D. Paulowski, Cesar Perez, Nicholas J. Ross, Patrick J. Scoggins, Rebecca Spatholt, Gregory A. Trees
-
Publication number: 20240000491Abstract: A surgical kit includes a surgical instrument, a packaging, and a return packaging. The packaging defines an interior and an exterior in a closed configuration. The surgical instrument is disposed within the interior of the packaging or coupled with the packaging in the closed configuration. The packaging is configured to transition to an open configuration by a user to expose the interior and allow for access of the surgical instrument during a surgical procedure. The return packaging is configured to receive at least a portion of the surgical instrument after the surgical procedure for reduced cross-contamination. The return packaging is at least one of coupled with the packaging or disposed within the interior in the closed configuration.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Taylor W. Aronhalt, Cameron D. McLain, Nicholas J. Ross
-
Publication number: 20240000526Abstract: A robotic surgical system including a controller, a surgical instrument, and a tool. The surgical instrument is configured to interact with a patient. The surgical instrument is operatively coupled with the controller. The tool is operatively coupled with the robotic surgical system. The tool includes a disassembly feature. The disassembly feature of the tool is configured to disconnect at least a portion of the surgical instrument from the robotic surgical system in response to instructions from the controller.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Taylor W. Aronhalt, David A. Bruns, Matthew E. Derrico, Kevin M. Fiebig, Cameron D. McLain
-
Publication number: 20240000474Abstract: A surgical instrument includes a shaft assembly, an end effector, an energy drive system, a circuit assembly, and a body assembly. Body assembly has a first shroud portion removably affixed to a second shroud portion by a shroud coupling in a connected state. The shroud coupling detaches the first shroud portion from the second shroud portion in a disconnected state. The first and second shroud portions in the connected state encloses and inhibits access to at least a portion of at least one of the circuit assembly or the energy drive system. The first and second shroud portions in the disconnected state allow access to the at least the portion of at least one of the circuit assembly or the energy drive system for removal of the at least the portion of at least one of the circuit assembly or the energy drive system.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Taylor W. Aronhalt, Robert N. Carranza, Aaron J. Chow, Matthew D. Cowperthwait, Guion Y. Lucas, Nicholas J. Ross, Patrick J. Scoggins
-
Publication number: 20240001416Abstract: A method of determining a disposal methodology of a surgical kit includes determining a geographical location in which the surgical kit is being used, generating a location data based on the geographical location, and providing the location data set to a resource device. The method further includes receiving the disposal methodology from the resource device based on the location data set, then displaying a set of instruction based on the disposal methodology received from the resource device.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Matthew D. Cowperthwait, Shane R. Adams, Taylor W. Aronhalt, Joseph D. Paulowski, Cesar Perez
-
SURGICAL INSTRUMENT WITH VARIOUS ALIGNMENT FEATURES AND METHOD FOR IMPROVED DISASSEMBLY AND ASSEMBLY
Publication number: 20240000475Abstract: A surgical instrument including an end effector that may transition between a deactivated and activated configured to transmit energy to tissue, and a proximal body attached to the end effector. The proximal body includes an electrical component that may assist the end effector, a first shroud, and a second shroud capable of coupling with the first shroud to cooperatively define a hollow interior that houses the electrical component. The proximal body further includes a first restraining feature and a second restraining feature associated with the first shroud and the second shroud, respectively. The first and second restraining features may couple together to cooperatively align the first shroud and the second shroud. The first and second restraining feature may selectively disengage to allow the first shroud and the second shroud to decouple form each other and expose the electrical component within the hollow interior.Type: ApplicationFiled: June 30, 2022Publication date: January 4, 2024Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Rebecca Spatholt, Ellen Burkart, Robert N. Carranza -
Publication number: 20220331050Abstract: A surgical system is disclosed including an imaging device, a display configured to show a livestream of a surgical field of a surgical procedure, and a control system operably coupled to the imaging device and the display. The livestream is captured by the imaging device. The control system is configured to overlay, on the livestream, information associated with the surgical procedure, detect an occurrence of a triggering event, and adjust the overlaid information based on the occurrence of the triggering event.Type: ApplicationFiled: March 7, 2022Publication date: October 20, 2022Inventors: Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Shane R. Adams, Cory G. Kimball, Monica L. Z. Rivard, Leonardo N. Rossoni, Matthew D. Cowperthwait, Risto Kojcev, Felix J. Bork
-
Publication number: 20220331051Abstract: A system, method, and device for displaying relevant augmented reality (AR) content to a surgical staff members without over-saturating the augmented display with virtual elements. The surgical staff members (e.g., doctors, nurses, surgeons, technicians, etc.) require AR content that is delicately balanced between displaying helpful information without distracting the surgeon. A surgical hub receives a plurality of inputs related to surgical environment and displays only necessary information to allow the surgeon to provide effective care to the patient, based on a determined trigger event.Type: ApplicationFiled: March 7, 2022Publication date: October 20, 2022Inventors: Frederick E. Shelton, IV, Jason L. Harris, Jacqueline C. Aronhalt, Matthew J. Thiel, Ryan W. McGhee, Tylor C. Muhlenkamp, Matjaz Jogan, Cory G. Kimball, Monica L.Z. Rivard, Leonardo N. Rossoni, Matthew D. Cowperthwait, Risto Kojcev, Felix J. Bork
-
Publication number: 20220338049Abstract: A method of assessing inter-device communication pairing in a surgical setting, may include transmitting, by a first intelligent medical device, wireless communication data within the surgical setting, receiving, by a second intelligent medical device, the wireless communication data from the first intelligent medical device, determining, by the second intelligent medical device, communication pairing data indicative of an inter-device communication pairing of the second intelligent medical device with the first intelligent medical device, transmitting, by the second intelligent medical device, the communication pairing data to a modular control tower, and displaying, by the modular control tower on a display device, an augmented reality display comprising one or more virtual objects indicative of the inter-device communication pairing. An interactive surgical system may include multiple intelligent medical devices and displays which can form communication pairs in this manner.Type: ApplicationFiled: March 7, 2022Publication date: October 20, 2022Inventors: Nicholas J. Ross, Matthew D. Cowperthwait, Grace E. Brooks, Shane R. Adams, Joshua P. Morgan, Taylor W. Aronhalt, Leonardo N. Rossoni, Cory G. Kimball, Monica L. Z. Rivard, Frederick E. Shelton, IV, Jacqueline C. Aronhalt, Kevin M. Fiebig, Risto Kojcev, Felix J. Bork
-
Patent number: 11278306Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.Type: GrantFiled: February 4, 2019Date of Patent: March 22, 2022Assignee: Cilag GmbH InternationalInventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
-
Publication number: 20190239918Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.Type: ApplicationFiled: February 4, 2019Publication date: August 8, 2019Inventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
-
Patent number: 10327798Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.Type: GrantFiled: January 31, 2017Date of Patent: June 25, 2019Assignee: Ethicon LLCInventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
-
Publication number: 20170196585Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.Type: ApplicationFiled: January 31, 2017Publication date: July 13, 2017Inventors: Daniel W. Price, Sora Rhee, IV, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Foster B. Stulen, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
-
Patent number: 9681884Abstract: An apparatus includes an end effector, an energy component, a control module, and a directional force sensor assembly associated with the energy component and control module. The directional force assembly can include a piezoelectric disc, a piezoresistive element, an accelerometer, and/or a Hall Effect sensor. The end effector of the apparatus can include ultrasonic blade, an RF electrode, or a staple driving assembly. In some versions, the energy component includes an ultrasonic transducer. The control module may be configured to operate the energy component at a first energy setting in response to a first detected force and at a second energy setting in response to a second detected force. The apparatus may also include an activation feature to be operated by a user. In some versions the piezoelectric disc may include a plurality of segments and may be configured to induce movement in at least part of the energy component.Type: GrantFiled: May 31, 2012Date of Patent: June 20, 2017Assignee: Ethicon Endo-Surgery, LLCInventors: William E. Clem, William D. Dannaher, Daniel W. Price, Cory G. Kimball, Foster B. Stulen, Eitan T. Wiener, John B. Schulte, Danius P. Silkaitus, Stephen J. Balek, Michael R. Lamping, Jacqueline C. Aronhalt
-
Patent number: 9572592Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.Type: GrantFiled: May 31, 2012Date of Patent: February 21, 2017Assignee: Ethicon Endo-Surgery, LLCInventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Foster B. Stulen, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping
-
Publication number: 20130324999Abstract: A surgical instrument comprises a body assembly and an end effector. The body assembly includes a control module, an orientation sensor communicatively coupled to the control module, and an energy component. The energy component is operable to activate the end effector at a plurality of energy settings. A storage device is communicatively coupled to the control module and includes a plurality of gesture profiles and corresponding energy settings. The control module is configured to set the energy setting of the energy component to a corresponding energy setting in response to a correlation between the output of the orientation sensor and a gesture profile. In some versions, the control module modifies the energy setting based upon output from a force sensor that measures the force on the end effector. The control module may also decrease the energy setting in response to an anomalous acceleration or deceleration detected by an accelerometer.Type: ApplicationFiled: May 31, 2012Publication date: December 5, 2013Inventors: Daniel W. Price, Sora Rhee, Cory G. Kimball, Timothy G. Dietz, Ashvani K. Madan, Donna L. Korvick, Foster B. Stulen, Jeffrey D. Messerly, William E. Clem, Jacqueline C. Aronhalt, William D. Dannaher, John B. Schulte, Danius P. Silkaitis, Stephen J. Balek, Michael R. Lamping