Patents by Inventor Jacqueline L. Schryer

Jacqueline L. Schryer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130273371
    Abstract: A process for producing highly monodisperse polystyrene particles includes steps of mixing water and styrene in a reactor, optionally adding an electrolyte to the mixture, purging the mixture of oxygen, adding a polymerization initiator while agitating and heating the mixture, and maintaining agitation and heating for a time sufficient to achieve a desired yield of monodisperse polystyrene particles having a particle size from 0.25 microns to 2.5 microns and a statistical quality factor greater than 10.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Applicant: U.S.A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Pacita I. Tiemsin, Donald M. Oglesby, Jacqueline L. Schryer
  • Patent number: 7985709
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: July 26, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony N. Watkins, Jacqueline L. Schryer, Donald M. Oglesby, Suresh T. Gulati, Jerry C. Summers
  • Patent number: 7781366
    Abstract: An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 24, 2010
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Anthony N. Watkins, Bradley D. Leighty, Donald M. Oglesby, JoAnne L. Patry, Jacqueline L. Schryer
  • Patent number: 7655595
    Abstract: An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: February 2, 2010
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Anthony N. Watkins, Bradley D. Leighty, Donald M. Oglesby, JoAnne L. Ingram, Jacqueline L. Schryer
  • Publication number: 20090163357
    Abstract: An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.
    Type: Application
    Filed: February 12, 2009
    Publication date: June 25, 2009
    Applicant: USA as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Anthony N. Watkins, Bradley D. Leighty, Donald M. Oglesby, JoAnne L. Patry, Jacqueline L. Schryer
  • Patent number: 7390768
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: June 24, 2008
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby, Suresh T. Gulati, Jerry C. Summers
  • Patent number: 7318915
    Abstract: This invention relates generally to a ruthenium stabilized oxidation-reduction catalyst useful for oxidizing carbon monoxide, and volatile organic compounds, and reducing nitrogen oxide species in oxidizing environments, substantially without the formation of toxic and volatile ruthenium oxide species upon said oxidizing environment being at high temperatures.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: January 15, 2008
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby
  • Publication number: 20070281855
    Abstract: An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Applicants: Space Administration
    Inventors: Anthony N. Watkins, Bradley D. Leighty, Donald M. Oglesby, JoAnne L. Ingram, Jacqueline L. Schryer
  • Publication number: 20030144143
    Abstract: This invention relates generally to a stabilization mechanism for use in oxidation/reduction catalyst systems. It particularly relates to a ruthenium stabilization mechanism that enables the use of inexpensive metallic species within catalyst systems targeted for the elimination of toxic emissions such as carbon monoxide, hydrocarbons, and other volatile organics, and specifically nitrogen oxide species. Said stabilization mechanism includes the use of zirconium-oxides in an oxidation-reduction catalyst.
    Type: Application
    Filed: January 13, 2003
    Publication date: July 31, 2003
    Applicant: Administrator of the National Aeronautics and Space Administration
    Inventors: Jeffrey D. Jordan, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby
  • Publication number: 20030139290
    Abstract: The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.
    Type: Application
    Filed: January 22, 2002
    Publication date: July 24, 2003
    Inventors: Jeffrey D. Jordan, David R. Schryer, Patricia P. Davis, Bradley D. Leighty, Anthony Neal Watkins, Jacqueline L. Schryer, Donald M. Oglesby