Patents by Inventor JACQUES JULES VAN OEKEL

JACQUES JULES VAN OEKEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11340359
    Abstract: A detector includes a first detection layer (1141) and a second detector layer (1142). The first and second detection layers include a first and second scintillator (204, 7041) (216, 7042), a first and second active photosensing region (210, 7081) (220, 7082), a first portion (206, 7261) of a first substrate (208, 7061), and a second portion (218, 7262) of a second substrate (208, 7062). An imaging system (100) includes a radiation source (110), a radiation sensitive detector array (108) comprising a plurality of multi-layer detectors (112), and a reconstructor (118) configured to reconstruct an output of the detector array and produces an image. The detector array includes a first detection layer and a second detector layer with a first and second scintillator, a first and second active photosensing region, a first portion of a first substrate, and a second portion of a second substrate.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: May 24, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christoph Herrmann, Roger Steadman Booker, Jakob Wijnand Mulder, Matthias Simon, Jacques Jules Van Oekel
  • Publication number: 20200064496
    Abstract: A detector includes a first detection layer (1141) and a second detector layer (1142). The first and second detection layers include a first and second scintillator (204, 7041) (216, 7042), a first and second active photosensing region (210, 7081) (220, 7082), a first portion (206, 7261) of a first substrate (208, 7061), and a second portion (218, 7262) of a second substrate (208, 7062). An imaging system (100) includes a radiation source (110), a radiation sensitive detector array (108) comprising a plurality of multi-layer detectors (112), and a reconstructor (118) configured to reconstruct an output of the detector array and produces an image. The detector array includes a first detection layer and a second detector layer with a first and second scintillator, a first and second active photosensing region, a first portion of a first substrate, and a second portion of a second substrate.
    Type: Application
    Filed: April 24, 2018
    Publication date: February 27, 2020
    Inventors: CHRISTOPH HERRMANN, ROGER STEADMAN BOOKER, JAKOB WIJNAND MULDER, MATTHIAS SIMON, JACQUES JULES VAN OEKEL
  • Patent number: 10345456
    Abstract: The present invention relates to a radiation detector device comprising a first array (120) of a plurality of columnar elements (125), wherein at least one of the columnar elements (125) comprises a base portion (126) and a protruding portion (127), and wherein at least one of the columnar elements (125) comprises a scintillating material and at least one of the columnar elements (125) is configured to generate a light ray by a radiation conversion; and a second array (130) of a plurality of photosensitive elements (135), wherein at least one of the photosensitive elements (135) is assigned to one of the columnar elements (125) and at least one of the photosensitive elements (135) is configured to detected the generated light ray and a read-out electronics circuit (150).
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: July 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Onno Jan Wimmers, Johannes Wilhelmus Maria Jacobs, Jacques Jules Van Oekel
  • Patent number: 9989652
    Abstract: A method for fabricating a pixelated scintillator including providing a pixelated scintillator-structure and a connection-structure in such a way that the connection-structure is in mechanical contact with two adjacent pixels of the pixelated scintillator-structure. Moreover, the pixelated scintillator-structure includes a first sintering-shrinking-coefficient and the connection-structure includes a second sintering-shrinking-coefficient that is greater than the first sintering-shrinking-coefficient. Further, the pixelated scintillator-structure and the connection-structure are sintered such that a gap between two adjacent pixels of the pixelated scintillator-structure is reduced.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 5, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Wilhelmus Maria Jacobs, Onno Jan Wimmers, Jacques Jules Van Oekel
  • Publication number: 20170322320
    Abstract: The invention relates to a method for fabricating a pixelated scintillator wherein a pixelated scintillator-structure (211) and a connection-structure (200) are provided in such a way that the connection-structure is in mechanical contact with two adjacent pixels of the pixelated scintillator-structure. Moreover, the pixelated scintillator-structure comprises a first sintering-shrinking-coefficient and the connection-structure comprises a second sintering-shrinking-coefficient that is greater than the first sintering-shrinking-coefficient. In a further method step, the pixelated scintillator-structure and the connection-structure are sintered such that the gap (212) between the two adjacent pixels (201, 202) of the pixelated scintillator-structure is reduced. Furthermore, the invention also relates to a pixelated scintillator, a detector and an imaging apparatus.
    Type: Application
    Filed: October 30, 2015
    Publication date: November 9, 2017
    Inventors: JOHANNES WILHELMUS MARIA JACOBS, ONNO JAN WIMMERS, JACQUES JULES VAN OEKEL
  • Publication number: 20170139058
    Abstract: The present invention relates to a radiation detector device comprising a first array (120) of a plurality of columnar elements (125), wherein at least one of the columnar elements (125) comprises a base portion (126) and a protruding portion (127), and wherein at least one of the columnar elements (125) comprises a scintillating material and at least one of the columnar elements (125) is configured to generate a light ray by a radiation conversion; and a second array (130) of a plurality of photosensitive elements (135), wherein at least one of the photosensitive elements (135) is assigned to one of the columnar elements (125) and at least one of the photosensitive elements (135) is configured to detected the generated light ray and a read-out electronics circuit (150).
    Type: Application
    Filed: June 1, 2015
    Publication date: May 18, 2017
    Inventors: ONNO JAN WIMMERS, JOHANNES WILHELMUS MARIA JACOBS, JACQUES JULES VAN OEKEL