Patents by Inventor Jacques Thebault

Jacques Thebault has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9382164
    Abstract: A refractory material that can withstand high temperatures in an oxidizing medium and containing at least: a first constituent corresponding to hafnium, or to a non-oxide compound of hafnium, or circular in a or a non-oxide compound of zirconium, or corresponding to a mixture of at least two metals and/or compounds selected from hafnium a non-oxide compound of hafnium, zirconium, and a non-oxide compound of zirconium; a second constituent corresponding to the boron or to a non-oxide compound of boron, or corresponding to a mixture of boron and a non-oxide compound of boron; and a third constituent corresponding to a rare earth RE or to a non-oxide compound of the rare earth RE, or corresponding to a mixture of rare earth RE and a non-oxide compound of the rare earth RE, where RE is selected from scandium, yttrium, and the lanthanides. The material contains neither silicon nor a compound of silicon.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 5, 2016
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, HERAKLES
    Inventors: Anne-Sophie Andreani, Francis Rebillat, Angeline Poulon, Jacques Thebault, Anne Sauveroche
  • Patent number: 9340460
    Abstract: A refractory material withstanding high temperatures in an oxidizing medium contains at least hafnium boride and tantalum boride, hafnium and tantalum being present in the refractory material exclusively in compound form.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: May 17, 2016
    Assignee: HERAKLES
    Inventors: Emilie Courcot Mendez, Jacques Thebault, Anne Sauveroche
  • Publication number: 20150175487
    Abstract: A refractory material withstanding high temperatures in an oxidizing medium contains at least hafnium boride and tantalum boride, hafnium and tantalum being present in the refractory material exclusively in compound form.
    Type: Application
    Filed: August 6, 2012
    Publication date: June 25, 2015
    Applicant: HERAKLES
    Inventors: Emilie Courcot Mendez, Jacques Thebault, Anne Sauveroche
  • Publication number: 20140287912
    Abstract: A process for preparing a monolithic catalysis element includes a fibrous support and a catalytic phase supported by the fibrous support and also the monolithic catalysis element. The process includes the steps of preparing a porous coherent structure based on refractory fibers; preparing a substrate including the porous coherent structure and nanocarbon supported by the porous coherent structure in the body thereof; and grafting to the substrate, by ? interaction, of at least one aromatic compound containing in its chemical formula, at least one aromatic ring, and at least one function chosen from acid catalytic functions, basic catalytic functions, metallic precursor functions, functions that can be converted in situ into metallic precursor functions, and mixtures thereof.
    Type: Application
    Filed: April 16, 2012
    Publication date: September 25, 2014
    Applicants: HERAKLES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Julien Souquet-Grumey, Hervé Plaisantin, Sabine Valange, Jean-Michel Tatibouet, Jacques Thebault, Joël Barrault
  • Publication number: 20140072805
    Abstract: A refractory material that can withstand high temperatures in an oxidizing medium and containing at least: a first constituent corresponding to hafnium, or to a non-oxide compound of hafnium, or circular in a or a non-oxide compound of zirconium, or corresponding to a mixture of at least two metals and/or compounds selected from hafnium a non-oxide compound of hafnium, zirconium, and a non-oxide compound of zirconium; a second constituent corresponding to the boron or to a non-oxide compound of boron, or corresponding to a mixture of boron and a non-oxide compound of boron; and a third constituent corresponding to a rare earth RE or to a non-oxide compound of the rare earth RE, or corresponding to a mixture of rare earth RE and a non-oxide compound of the rare earth RE, where RE is selected from scandium, yttrium, and the lanthanides. The material contains neither silicon nor a compound of silicon.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 13, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, HERAKLES
    Inventors: Anne-Sophie Andreani, Angeline Poulon, Francis Rebillat, Jacques Thebault, Anne Sauveroche
  • Patent number: 8357423
    Abstract: The invention relates to a method of making a refractory carbide layer on the accessible surface of a C/C composite material, the method including a step consisting in placing the composite material in contact with a reactive composition in solid form that contains an atomic proportion greater than or equal to one-third and less than or equal to 95% of a metal that is a precursor of a determined carbide having a melting temperature greater than 2000° C., and an atomic proportion of silicon that is greater than or equal to 5% and less than or equal to two-thirds. The method further includes a step consisting in impregnating the accessible surface of the C/C composite material with the reactive composition melted at a temperature that is greater than or equal to the melting temperature of the metal that is a precursor of a determined carbide.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: January 22, 2013
    Assignees: Snecma Propulsion Solide, Centre National de la Recherche Scientifique
    Inventors: Jacques Thebault, Christian Robin-Brosse, Aurélie Quet, René Pailler
  • Patent number: 8261891
    Abstract: Within the pores of a porous thermostructural composite material, there is form an aerogel or xerogel made up of a precursor for a refractory material, the precursor is transformed by pyrolysis to obtain an aerogel or xerogel of refractory material, and then it is silicided by being impregnated with a molten silicon type phase. The aerogel or xerogel is formed by impregnating the composite material with a composition containing at least one organic, organometalloid, or organometallic compound in solution, followed by in situ gelling. The method is applicable to improving the tribological properties or the thermal conductivity of C/C or C/SiC composite material parts, or to making such parts leakproof.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: September 11, 2012
    Assignee: Snecma Propulsion Solide
    Inventors: Jacques Thebault, Rene Pailler, Jean-Christophe Ichard
  • Publication number: 20120164430
    Abstract: In a composite material part having a ceramic matrix and including a fibrous reinforcement which is densified by a matrix consisting of a plurality of ceramic layers having a crack-diverting matrix interphase positioned between two adjacent ceramic matrix layers, the interphase includes a first phase made of a material capable of promoting the diversion of a crack reaching the interphase according to a first propagation mode in the transverse direction through one of the two ceramic matrix layers adjacent to the interphase, such that the propagation of the crack continues according to a second propagation mode along the interphase, and a second phase consisting of discrete contact pads that are distributed within the interphase and capable of promoting the diversion of the crack that propagates along the interphase according to the second propagation mode, such that the propagation of the crack is diverted and continues according to the first propagation mode through the other ceramic matrix layer that is adj
    Type: Application
    Filed: July 21, 2010
    Publication date: June 28, 2012
    Applicant: SNECMA PROPULSION SOLIDE
    Inventors: Jacques Thebault, Sébastien Bertrand
  • Patent number: 8084079
    Abstract: A method of densifying a porous substrate with pyrolytic carbon includes loading the substrate into an oven, admitting a reaction gas mixture to the oven, extracting an effluent gas from the oven, and recycling components of the effluent gas into the reaction gas mixture. The reaction gas mixture contains a pyrolytic carbon precursor gas together with a vector gas. The effluent gas contains residual components of the reaction gas mixture together with reaction products, including hydrogen. The recycling is performed after eliminating heavy hydrocarbons contained in the effluent gas.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: December 27, 2011
    Assignee: Snecma Propulsion Solide
    Inventors: Jacques Thebault, Sébastien Bertrand, Christian Robin-Brosse, Bruno Bernard, Jean-Luc Domblides
  • Publication number: 20110017353
    Abstract: The invention relates to a method of making a refractory carbide layer on the accessible surface of a C/C composite material, the method including a step consisting in placing the composite material in contact with a reactive composition in solid form that contains an atomic proportion greater than or equal to one-third and less than or equal to 95% of a metal that is a precursor of a determined carbide having a melting temperature greater than 2000° C., and an atomic proportion of silicon that is greater than or equal to 5% and less than or equal to two-thirds. The method further includes a step consisting in impregnating the accessible surface of the C/C composite material with the reactive composition melted at a temperature that is greater than or equal to the melting temperature of the metal that is a precursor of a determined carbide.
    Type: Application
    Filed: December 12, 2008
    Publication date: January 27, 2011
    Inventors: Jacques Thebault, Christian Robin-Brosse, Aurélie Quet, René Pailler
  • Patent number: 7736554
    Abstract: A method of manufacturing a part out of impervious thermostructural composite material, the method comprising forming a porous substrate from at least one fiber reinforcement made of refractory fibers, and densifying the reinforcement by a first phase of carbon and by a second phase of silicon carbide. The method then continues by impregnating the porous substrate with a composition based on molten silicon so as to fill in the pores of the substrate.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: June 15, 2010
    Assignee: Snecma Propulsion Solide
    Inventors: Jacques Thebault, Clément Bouquet, Michel Laxague, Hervé Evrard
  • Patent number: 7560139
    Abstract: Thermostructural composite structure having a compositional gradient, formed from a porous core (5) made of a refractory having a pore volume content of greater than or equal to 80%. The core (5) lies between two intermediate layers (6a, 6b) comprising the carbon fiber reinforcement, densified by a matrix composed of the carbon phase and of a ceramic phase, and a refractory solid filler. Two monolithic ceramic shells (7a, 7b) cover the intermediate layers in order to give stiffness to the entire structure.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: July 14, 2009
    Assignee: Snecma Propulsion Solide
    Inventors: Jacques Thebault, Laurent David
  • Publication number: 20090120743
    Abstract: Within the pores of a porous thermostructural composite material, there is form an aerogel or xerogel made up of a precursor for a refractory material, the precursor is transformed by pyrolysis to obtain an aerogel or xerogel of refractory material, and then it is silicided by being impregnated with a molten silicon type phase. The aerogel or xerogel is formed by impregnating the composite material with a composition containing at least one organic, organometalloid, or organometallic compound in solution, followed by in situ gelling. The method is applicable to improving the tribological properties or the thermal conductivity of C/C or C/SiC composite material parts, or to making such parts leakproof.
    Type: Application
    Filed: January 16, 2009
    Publication date: May 14, 2009
    Applicant: Snecma Propulsion Solide
    Inventors: Jacques Thebault, Rene Pailler, Jean-Christophe Ichard
  • Publication number: 20090110877
    Abstract: A composite material part is made by forming a fiber preform (20), forming holes (22) extending within the preform from at least one face thereof, and densifying the preform with a matrix formed at least in part by a chemical vapor infiltration (CVI) type process. The holes (22) are formed by removing material from the preform with fibers being ruptured, for example by machining using a jet of water under pressure, the arrangement of the fibers in the preform with the holes being substantially unchanged compared with the initial arrangement before the holes were formed. This enables the densification gradient to be greatly reduced, and it is possible in a single densification cycle to obtain a density that, in the prior art, required a plurality of cycles separated by intermediate scalping.
    Type: Application
    Filed: June 1, 2006
    Publication date: April 30, 2009
    Applicant: SNECMA PROPULSION SOLIDE
    Inventors: Bruno Bernard, Stephane Goujard, Sebastien Bertrand, Jacques Thebault
  • Patent number: 7497918
    Abstract: Within the pores of a porous thermostructural composite material, there is form an aerogel or xerogel made up of a precursor for a refractory material, the precursor is transformed by pyrolysis to obtain an aerogel or xerogel of refractory material, and then it is silicided by being impregnated with a molten silicon type phase. The aerogel or xerogel is formed by impregnating the composite material with a composition containing at least one organic, organometalloid, or organometallic compound in solution, followed by in situ gelling. The method is applicable to improving the tribological properties or the thermal conductivity of C/C or C/SiC composite material parts, or to making such parts leakproof.
    Type: Grant
    Filed: February 16, 2004
    Date of Patent: March 3, 2009
    Assignee: Snecma Propulsion Solide
    Inventors: Jacques Thebault, René Pailler, Jean-Christophe Ichard
  • Publication number: 20080190552
    Abstract: The invention relates to a method of brazing together two parts (10, 20), the method being characterized in that a pad (30) is interposed between the two surfaces (S10, S20) of the parts that are to be joined together, said pad being formed by a refractory fiber texture, and being at least in part in contact with a brazing composition (40), and heat treatment is performed to liquefy the brazing composition (40) so as to cause the molten brazing composition to be distributed by capillarity over the entire brazing area between the two parts (10, 20) covered by the pad (30).
    Type: Application
    Filed: June 22, 2005
    Publication date: August 14, 2008
    Inventors: Eric Bouillon, Sebastien Jimenez, Jacques Thebault
  • Publication number: 20080160192
    Abstract: One or more porous substrates for densification (10) are loaded into an oven (12) into which there is admitted a reaction gas containing a pyrolytic carbon precursor gas comprising at least one gaseous hydrocarbons CxHy in which x and y are integers and x is such that 1<x<6, together with a vector gas comprising at least one gas selected from methane and inert gases. Effluent gas containing residual components of the admitted gas together with reaction products, including hydrogen, is extracted from the oven and at least a fraction of a gas stream extracted from the effluent gas and containing pyrolytic carbon precursor reagent gas is recycled (circuit 80) into the reaction gas admitted into the oven, the recycling being performed after eliminating heavy hydrocarbons (treatment 40) contained in the effluent gas.
    Type: Application
    Filed: January 23, 2006
    Publication date: July 3, 2008
    Inventors: Jacques Thebault, Sebastien Bertrand, Christian Robin-Brosse, Bruno Bernard, Jean-Luc Domblides
  • Publication number: 20070199626
    Abstract: A part made of a composite material containing carbon, having an open internal residual porosity is protected against oxidation by performing at least one stage in which an impregnating composition is applied, said impregnating composition containing at least one metal phosphate and titanium diboride. Efficient protection against oxidation is thus obtained at temperatures of more than 1000° C., also in the presence of a carbon oxidation catalyst and in a damp medium.
    Type: Application
    Filed: July 29, 2004
    Publication date: August 30, 2007
    Inventors: Pascal Diss, Jacques Thebault
  • Publication number: 20070042121
    Abstract: Thermostructural composite structure having a compositional gradient, formed from a porous core (5) made of a refractory having a pore volume content of greater than or equal to 80%. The core (5) lies between two intermediate layers (6a, 6b) comprising the carbon fiber reinforcement, densified by a matrix composed of the carbon phase and of a ceramic phase, and a refractory solid filler. Two monolithic ceramic shells (7a, 7b) cover the intermediate layers in order to give stiffness to the entire structure.
    Type: Application
    Filed: April 11, 2006
    Publication date: February 22, 2007
    Inventors: Jacques Thebault, Laurent David
  • Publication number: 20060169404
    Abstract: Within the pores of a porous thermostructural composite material, there is form an aerogel or xerogel made up of a precursor for a refractory material, the precursor is transformed by pyrolysis to obtain an aerogel or xerogel of refractory material, and then it is silicided by being impregnated with a molten silicon type phase. The aerogel or xerogel is formed by impregnating the composite material with a composition containing at least one organic, organometalloid, or organometallic compound in solution, followed by in situ gelling. The method is applicable to improving the tribological properties or the thermal conductivity of C/C or C/SiC composite material parts, or to making such parts leakproof.
    Type: Application
    Filed: February 16, 2004
    Publication date: August 3, 2006
    Inventors: Jacques Thebault, Rene Pailler, Jean-Chistophe Ichard