Patents by Inventor Jad Rizk

Jad Rizk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11757357
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Grant
    Filed: April 6, 2022
    Date of Patent: September 12, 2023
    Assignee: Intel Corporation
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot
  • Publication number: 20220239222
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Application
    Filed: April 6, 2022
    Publication date: July 28, 2022
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot
  • Patent number: 11323026
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: May 3, 2022
    Assignee: Intel Corporation
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot
  • Publication number: 20210075316
    Abstract: An on-die voltage regulator (VR) is provided that can deliver much higher conversion efficiency than the traditional solution (e.g., FIVR, LDO) during the standby mode of a system-on-chip (SOC), and it can save the power consumption significantly, during the connected standby mode. The VR operates as a switched capacitor VR under the low load current condition that is common during the standby mode of the SOC, while it automatically switches to the digital linear VR operation to handle a sudden high load current condition at the exit from the standby condition. A digital proportional-integral-derivative (PID) controller or a digital proportional-derivative-averaging (PDA) controller is used to achieve a very low power operation with stability and robustness. As such, the hybrid VR achieves much higher conversion efficiency than the linear voltage regulator (LVR) for low load current condition (e.g., lower than 500 mA).
    Type: Application
    Filed: September 6, 2019
    Publication date: March 11, 2021
    Applicant: Intel Corporation
    Inventors: Takao Oshita, Fabrice Paillet, Rinkle Jain, Jad Rizk, Danny Bronstein, Ahmad Arnaot