Patents by Inventor Jadin C. Jackson

Jadin C. Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220032059
    Abstract: Devices, systems, and techniques are described for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 3, 2022
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Publication number: 20220032063
    Abstract: Devices, systems, and techniques are described for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Application
    Filed: July 31, 2020
    Publication date: February 3, 2022
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Patent number: 11135429
    Abstract: Techniques are described to determine a location of at least one oscillatory signal source in a patient. Processing circuitry may determine expected electrical signal levels based on a hypothetical location of the at least one oscillatory signal source. Processing circuitry may determine the electrical signal levels and determine an error value based on the expected electrical signal levels and the determined electrical signal levels. Processing circuitry may adjust the hypothetical location of the at least one oscillatory signal source until the error value is less than or equal to a threshold value, including the example where the error value is minimized.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: October 5, 2021
    Assignee: Medtronic, Inc.
    Inventors: Eric J. Panken, Christopher L. Pulliam, Jadin C. Jackson, Yizi Xiao
  • Publication number: 20210251578
    Abstract: A system for detecting strokes includes a sensor device configured to obtain physiological data from a patient, for example brain activity data. The sensor device can include electrodes configured to be disposed at the back of the patient's neck or base of the skull. The electrodes can detect electrical signals corresponding to brain activity in the P3, Pz, and/or P4 brain regions or other brain regions. A computing device communicatively coupled to the sensor device is configured to receive the physiological data and analyze it to indicate whether the patient has suffered a stroke.
    Type: Application
    Filed: August 28, 2020
    Publication date: August 19, 2021
    Inventors: Randal C. Schulhauser, John Wainwright, Eric J. Panken, Jadin C. Jackson, Alejo Chavez Gaxiola, Aaron Gilletti, Eduardo N. Warman, Paul G. Krause, Eric M. Christensen, Patrick W. Kinzie, Julia Slopsema
  • Publication number: 20210251525
    Abstract: An enzymatic sensor configured to determine the concentration of levodopa present in a sample according to a current or a resonant frequency produced in response to levodopa interactions with L-amino acid decarboxylase present in the sensor. A processor associated with the sensor determines levodopa concentration and produces dose recommendation or output according to levodopa concentration.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 19, 2021
    Inventors: David Probst, Randal Schulhauser, Patrick W. Kinzie, Jadin C. Jackson, Daniel Hahn
  • Publication number: 20210251497
    Abstract: A system for detecting strokes includes a sensor device configured to obtain physiological data from a patient, for example brain activity data. The sensor device can include electrodes configured to be disposed at the back of the patient's neck or base of the skull. The electrodes can detect electrical signals corresponding to brain activity in the P3, Pz, and/or P4 brain regions or other brain regions. A computing device communicatively coupled to the sensor device is configured to receive the physiological data and analyze it to indicate whether the patient has suffered a stroke.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 19, 2021
    Inventors: Randal C. Schulhauser, John Wainwright, Eric J. Panken, Jadin C. Jackson, Alejo Chavez Gaxiola, Aaron Gilletti, Eduardo N. Warman, Paul G. Krause, Eric M. Christensen, Patrick W. Kinzie, Julia Slopsema, Avram Scheiner, Brian D. Pederson, David J. Miller
  • Publication number: 20210226471
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Application
    Filed: April 2, 2021
    Publication date: July 22, 2021
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie R. Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 11045652
    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 29, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Yizi Xiao, Paula Andrea Elma Dassbach Green, Jianping Wu, Christopher L. Pulliam, Eric J. Panken, Robert S. Raike, Scott R. Stanslaski
  • Patent number: 11033742
    Abstract: Techniques are disclosed for using probabilistic entropy to select electrodes with fewer artifacts for controlling adaptive electrical neurostimulation. In one example, a plurality of electrodes sense bioelectrical signals of a brain of a patient. Processing circuitry determines, for each bioelectrical signal sensed at a respective electrode of the plurality of electrodes, a probabilistic entropy value of the bioelectrical signal. The processing circuitry compares each of the respective probabilistic entropy values of the bioelectrical signal to respective entropy threshold values and selects, based on the comparisons, a subset of electrodes of the plurality of electrodes. The processing circuitry controls, based on the bioelectrical signals sensed via respective electrodes of the subset of electrodes and excluding the bioelectrical signals of the plurality of bioelectrical signals sensed via respective electrodes not in the subset of electrodes, delivery of electrical stimulation therapy to the patient.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 15, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Eric J. Panken, Jadin C. Jackson, Yizi Xiao, Christopher L. Pulliam
  • Patent number: 10971943
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: April 6, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Publication number: 20200338351
    Abstract: Techniques are described to determine a location of at least one oscillatory signal source in a patient. Processing circuitry may determine expected electrical signal levels based on a hypothetical location of the at least one oscillatory signal source. Processing circuitry may determine the electrical signal levels and determine an error value based on the expected electrical signal levels and the determined electrical signal levels. Processing circuitry may adjust the hypothetical location of the at least one oscillatory signal source until the error value is less than or equal to a threshold value, including the example where the error value is minimized.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Eric J. Panken, Christopher L. Pulliam, Jadin C. Jackson, Yizi Xiao
  • Publication number: 20200338353
    Abstract: Techniques are described determining electrodes that are proximate or distal to location of an oscillatory signal source in a patient based on current source densities (CSDs). Processing circuitry may determine, for one or more electrodes of a plurality of electrodes, respective time-varying measurements of CSDs, aggregate, for the one or more electrodes of the plurality electrodes, the respective time-varying measurements of the CSDs to generate respective average level values for the one or more electrodes of the plurality of electrodes, determine, for one or more electrodes of the plurality of electrodes, respective phase-magnitude representations of the time-varying measurements of the CSDs. The respective phase-magnitude representations are indicative of respective magnitudes and phases of a particular frequency component of respective time-varying measurements of the CSDs.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Jadin C. Jackson, Yizi Xiao, Paula Andrea Elma Dassbach Green, Jianping Wu, Christopher L. Pulliam, Eric J. Panken, Robert S. Raike, Scott R. Stanslaski
  • Publication number: 20200338350
    Abstract: Techniques are disclosed for using probabilistic entropy to select electrodes with fewer artifacts for controlling adaptive electrical neurostimulation. In one example, a plurality of electrodes sense bioelectrical signals of a brain of a patient. Processing circuitry determines, for each bioelectrical signal sensed at a respective electrode of the plurality of electrodes, a probabilistic entropy value of the bioelectrical signal. The processing circuitry compares each of the respective probabilistic entropy values of the bioelectrical signal to respective entropy threshold values and selects, based on the comparisons, a subset of electrodes of the plurality of electrodes. The processing circuitry controls, based on the bioelectrical signals sensed via respective electrodes of the subset of electrodes and excluding the bioelectrical signals of the plurality of bioelectrical signals sensed via respective electrodes not in the subset of electrodes, delivery of electrical stimulation therapy to the patient.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Eric J. Panken, Jadin C. Jackson, Yizi Xiao, Christopher L. Pulliam
  • Publication number: 20200185093
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Application
    Filed: January 6, 2020
    Publication date: June 11, 2020
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Publication number: 20200129757
    Abstract: Techniques are disclosed to automate determination of therapy parameter values for adaptive deep brain stimulation (aDBS). A medical device may determine differences in power values between a present and a previous power value. Based on the difference being greater than or equal to a threshold value, the medical device may iteratively adjust a present therapy parameter value until the difference in the power values between a present and a previous power value is less than the threshold value.
    Type: Application
    Filed: October 26, 2018
    Publication date: April 30, 2020
    Inventors: Yizi Xiao, Eric J. Panken, Scott R. Stanslaski, Jadin C. Jackson, Christopher Pulliam
  • Publication number: 20200136417
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 30, 2020
    Applicant: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 10554069
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 4, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 10529450
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: January 7, 2020
    Assignee: Medtronic, Inc.
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson
  • Publication number: 20190190296
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Publication number: 20180350465
    Abstract: Techniques are described for real-time phase detection. For the phase detection, a signal is correlated with a frequency component of a frequency band whose phase is being detected, and the correlation includes predominantly decreasing weighting of past portions of the signals.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 6, 2018
    Inventors: Robert A. Corey, Gregory J. Loxtercamp, Heather Diane Orser, Scott R. Stanslaski, Jadin C. Jackson