Patents by Inventor Jae Han Cha

Jae Han Cha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10395987
    Abstract: The disclosure is related to MV transistors with reduced gate induced drain leakage (GIDL) and impact ionization. The reduced GILD and impact ionization are achieved without increasing device pitch of the MV transistor. A low voltage (LV) device region and a medium voltage (MV) device region are disposed on the substrate. Non-extended spacers are disposed on the sidewalls of the LV gate in the LV device region; extended L shaped spacers are disposed on the sidewalls of the MV gate in the MV device region. The non-extended spacers and extended L shape spacers are patterned simultaneously. Extended L shaped spacers displace the MV heavily doped (HD) regions a greater distance from at least one sidewall of the MV gate to reduce the GIDL and impact ionization of the MV transistor.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: August 27, 2019
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Chia Ching Yeo, Kiok Boone Elgin Quek, Khee Yong Lim, Jae Han Cha, Yung Fu Chong
  • Publication number: 20170200649
    Abstract: The disclosure is related to MV transistors with reduced gate induced drain leakage (GIDL) and impact ionization. The reduced GILD and impact ionization are achieved without increasing device pitch of the MV transistor. A low voltage (LV) device region and a medium voltage (MV) device region are disposed on the substrate. Non-extended spacers are disposed on the sidewalls of the LV gate in the LV device region; extended L shaped spacers are disposed on the sidewalls of the MV gate in the MV device region. The non-extended spacers and extended L shape spacers are patterned simultaneously. Extended L shaped spacers displace the MV heavily doped (HD) regions a greater distance from at least one sidewall of the MV gate to reduce the GIDL and impact ionization of the MV transistor.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 13, 2017
    Inventors: Chia Ching YEO, Kiok Boone Elgin QUEK, Khee Yong LIM, Jae Han CHA, Yung Fu CHONG
  • Patent number: 9653365
    Abstract: A method for fabricating an integrated circuit that include providing or obtaining an extremely thin silicon-on-insulator (ETSOI) substrate, dividing the ETSOI substrate into a low voltage field effect transistor (FET) region and one or both of a medium voltage FET region and a high voltage FET regions, and forming a low voltage FET within the low voltage FET regions and forming a medium and/or high voltage FET within the medium and/or high voltage FET region(s). Channel, source, and drain structures of the low voltage FET are formed in an upper silicon layer that is disposed above a buried oxide layer of the ETSOI substrate, whereas channel, source, and drain structures of the medium and/or high voltage FETs are formed at least partially below the upper silicon layer.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: May 16, 2017
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Khee Yong Lim, Jae Han Cha, Chia Ching Yeo, Kiok Boone Elgin Quek
  • Patent number: 9099557
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 4, 2015
    Assignee: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8981453
    Abstract: A nonvolatile memory device includes a unit cell with a transistor and a capacitor. The transistor is disposed on a substrate having a tunneling region and a channel region and includes a floating gate crossing both the tunneling region and the channel region. The capacitor is coupled to the floating gate.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 17, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Jae-han Cha
  • Patent number: 8969161
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 3, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8853787
    Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end portion thereof extending over the isolation layer.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 7, 2014
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Publication number: 20140151793
    Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end portion thereof extending over the isolation layer.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
  • Patent number: 8716796
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 6, 2014
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8692328
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 8, 2014
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Publication number: 20140030862
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
  • Publication number: 20140027846
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH
  • Publication number: 20140021541
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 23, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young Chae, IN-Taek OH
  • Publication number: 20140021542
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 23, 2014
    Applicant: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young Chae, In-Taek OH
  • Patent number: 8575702
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 5, 2013
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8552497
    Abstract: The semiconductor device includes: a first conductive-type first well and a second conductive-type second well configured over a substrate to contact each other; a second conductive-type anti-diffusion region configured in an interface where the first conductive-type first well contacts the second conductive-type second well over the substrate; and a gate electrode configured to simultaneously cross the first conductive-type first well, the second conductive-type anti-diffusion region, and the second conductive-type second well over the substrate.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: October 8, 2013
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8546881
    Abstract: A semiconductor device includes a second conductive-type well configured over a substrate, a first conductive-type body region configured over the second conductive-type well, a gate electrode which overlaps a portion of the first conductive-type body region, and a first conductive-type channel extension region formed over the substrate and which overlaps a portion of the gate electrode.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: October 1, 2013
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8546883
    Abstract: A semiconductor device includes a second conductive-type deep well configured above a substrate. The deep well includes an ion implantation region and a diffusion region. A first conductive-type first well is formed in the diffusion region. A gate electrode extends over portions of the ion implantation region and of the diffusion region, and partially overlaps the first well. The ion implantation region has a uniform impurity concentration whereas the impurity concentration of the diffusion region varies from being the highest concentration at the boundary interface between the ion implantation region and the diffusion region to being the lowest at the portion of the diffusion region that is the farthest away from the boundary interface.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: October 1, 2013
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8362556
    Abstract: A semiconductor device includes a substrate with one or more active regions and an isolation layer formed to surround an active region and to extend deeper into the substrate than the one or more active regions. The semiconductor further includes a gate electrode, which covers a portion of the active region, and which has one end; portion thereof extending over the isolation layer.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: January 29, 2013
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Publication number: 20120049278
    Abstract: The semiconductor device includes: a first conductive-type first well and a second conductive-type second well configured over substrate to contact each other; a second conductive-type anti-diffusion region configured in an interface where the first conductive-type first well contacts the second conductive-type second well over the substrate; and a gate electrode configured to simultaneously cross the first conductive-type first well, the second conductive-type anti-diffusion region, and the second conductive-type second well over the substrate.
    Type: Application
    Filed: November 7, 2011
    Publication date: March 1, 2012
    Inventors: Jae-Han CHA, Kyung-Ho LEE, Sun-Goo KIM, Hyung-Suk CHOI, Ju-Ho KIM, Jin-Young CHAE, In-Taek OH