Patents by Inventor Jae Han Song

Jae Han Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240102054
    Abstract: A method of reducing a concentration of a nitrogen oxide, the method comprising: contacting a microorganism with a nitrogen oxide-containing sample to reduce the concentration of the nitrogen oxide in the sample, wherein the contacting comprises contacting the microorganism with Fe(II)(L)-NOx in a bioreactor, wherein the Fe(II)(L)-NOx is a complex in which a chelating agent, Fe2+, and NOx are chelated, wherein L is the chelating agent, and wherein NOx is a nitrogen oxide ligand.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Inventors: Seung Hoon Song, Heejoo Han, Woo Yong Shim, Sukhwan Yoon, Jae-Young Kim, Sojung Yoon, Yu Kyung Jung
  • Patent number: 11941249
    Abstract: A memory device, a host device and a memory system are provided. The memory device may include a plurality of storage units configured to store data, and at least one device controller configured to, receive a read command from at least one host device and to read data stored in the plurality of storage units in response to the read command, the at least one host device including at least one host memory including a plurality of HPB (high performance boosting) entry storage regions, and provide the at least one host device with a response command, the response command indicating an activation or deactivation of the plurality of HPB entry storage regions, the response command including HPB entry type information which indicates a HPB entry type of the HPB entry storage region.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: March 26, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-Woo Kim, Jae Sun No, Byung June Song, Kyoung Back Lee, Wook Han Jeong
  • Patent number: 11542372
    Abstract: Provided are thermoplastic polymer particles having an aspect ratio of 1.00 or more and less than 1.05, and a roundness of 0.95 to 1.00. The thermoplastic polymer particles are formed from a thermoplastic polymer resin in a continuous matrix phase. The thermoplastic polymer particles show a peak cold crystallization temperature (Tcc) at a temperature between a glass transition temperature (Tg) and the melting point (Tm) in a differential scanning calorimetry (DSC) curve which is derived from temperature rise analysis at 10° C./min by differential scanning calorimetry.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: January 3, 2023
    Inventors: Jae Ho Lim, Sung Yong Kang, Kyoung Min Kang, Hee-Jung Lee, Min Gyung Kim, Chang-Young Park, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Publication number: 20220380493
    Abstract: The present invention relates to polypropylene particles and a method for preparing same, the polypropylene particles being formed from a polypropylene resin, and having a melting index (M.I.) of 1000 g/10 min or more when the particles are re-melted under a temperature condition of 150° C. to 250° C. and a condition of atmospheric pressure to a pressure of 15 MPa.
    Type: Application
    Filed: October 7, 2020
    Publication date: December 1, 2022
    Applicant: LX Hausys, Ltd.
    Inventors: Jae Han Song, Sung Yong Kang, Hee-Jung Lee, Min Gyung Kim, Jae Ho Lim, Jun Ho Choi, Yu Jin Go, Hyo Jae Kong
  • Publication number: 20220340720
    Abstract: The present invention relates to a method for preparing thermoplastic polymer particles, the method comprising the steps of: (1) extruding a thermoplastic polymer resin by means of an extruder; (2) granulating the extruded polymer resin by using an inert gas; and (3) cooling the granulated thermoplastic polymer resin, and thermoplastic polymer particles prepared thereby.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 27, 2022
    Applicant: LX Hausys, Ltd.
    Inventors: Jae Ho Lim, Sung Yong Kang, Min Gyung Kim, Yu Jin Go, Jae Han Song, Jun Ho Choi, Hyo Jae Kong, Yun Hwan Hwang
  • Publication number: 20220332903
    Abstract: The present invention relates to a method for manufacturing thermoplastic polymer particles, and the thermoplastic polymer particles, the method comprising the steps of: (1) extruding a thermoplastic polymer resin through an extruder; (2) spraying the extruded thermoplastic polymer resin through a nozzle and then spraying a gas to the sprayed thermoplastic polymer resin through a plurality of sprayers so as to granulate same; and (3) cooling the granulated thermoplastic polymer resin.
    Type: Application
    Filed: September 11, 2020
    Publication date: October 20, 2022
    Applicant: LX Hausys, Ltd.
    Inventors: Min Gyung Kim, Sung Yong Kang, Jae Ho Lim, Yu Jin Go, Jae Han Song, Jun Ho Choi, Hyo Jae Kong, Yun Hwan Hwang
  • Patent number: 11149120
    Abstract: Provided is a method for manufacturing thermoplastic polymer particles, the method comprising the steps of: supplying a thermoplastic polymer resin to an extruder and extruding the same; supplying the extruded thermoplastic polymer resin and air to a nozzle, bringing the thermoplastic polymer resin into contact with the air to granulate the thermoplastic polymer resin, and then discharging the granulated thermoplastic polymer resin; and supplying discharged thermoplastic polymer particles to a cooling unit to cool the thermoplastic polymer particles, and then collecting the cooled thermoplastic polymer particles.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: October 19, 2021
    Inventors: Hee-Jung Lee, Sung Yong Kang, Kyoung Min Kang, Min Gyung Kim, Chang-Young Park, Jae Ho Lim, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Patent number: 11118019
    Abstract: The present invention provides thermoplastic polyurethane particles, which are formed in a continuous matrix phase from a thermoplastic polyurethane resin and have a particle diameter of 200-500 ?m. In a differential scanning calorimetry (DSC) curve of the thermoplastic polyurethane particles, derived from the analysis of a temperature rise of 10° C./min by DSC, a peak of the cold crystallization temperature (Tcc) is shown at a temperature between the glass transition temperature (Tg) and the melting point (Tm). The thermoplastic polyurethane particles have a compression degree of 10-20%.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: September 14, 2021
    Inventors: Min Gyung Kim, Sung Yong Kang, Kyoung Min Kang, Hee-Jung Lee, Chang-Young Park, Jae Ho Lim, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Publication number: 20210253802
    Abstract: Provided are thermoplastic polymer particles having an aspect ratio of 1.00 or more and less than 1.05, and a roundness of 0.95 to 1.00. The thermoplastic polymer particles are formed from a thermoplastic polymer resin in a continuous matrix phase. The thermoplastic polymer particles show a peak cold crystallization temperature (Tcc) at a temperature between a glass transition temperature (Tg) and the melting point (Tm) in a differential scanning calorimetry (DSC) curve which is derived from temperature rise analysis at 10° C./min by differential scanning calorimetry.
    Type: Application
    Filed: March 25, 2021
    Publication date: August 19, 2021
    Applicant: LG Hausys, Ltd.
    Inventors: Jae Ho Lim, Sung Yong Kang, Kyoung Min Kang, Hee-Jung Lee, Min Gyung Kim, Chang-Young Park, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Patent number: 11066527
    Abstract: The present invention provides polylactic acid particles, which are formed in a continuous matrix phase from a polylactic acid resin and have a particle diameter of 1 to 100 ?m. In a differential scanning calorimetry (DSC) curve of the polylactic acid particles, derived from the analysis by DSC using a temperature rise of 10° C./min, a peak of the cold crystallization temperature (Tcc) is shown at a temperature between the glass transition temperature (Tg) and the melting point (Tm). The polylactic acid particles have an aspect ratio of more than or equal to 1.00 and less than 1.05 and a roundness of 0.95 to 1.00. The polylactic acid particles have a flow time of 20 to 30 seconds.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: July 20, 2021
    Inventors: Kyoung Min Kang, Sung Yong Kang, Hee-Jung Lee, Min Gyung Kim, Chang-Young Park, Jae Ho Lim, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Patent number: 11001677
    Abstract: Provided are thermoplastic polymer particles having an aspect ratio of 1.00 or more and less than 1.05, and a roundness of 0.95 to 1.00. The thermoplastic polymer particles are formed from a thermoplastic polymer resin in a continuous matrix phase. The thermoplastic polymer particles show a peak cold crystallization temperature (Tcc) at a temperature between a glass transition temperature (Tg) and the melting point (Tm) in a differential scanning calorimetry (DSC) curve which is derived from temperature rise analysis at 10° C./min by differential scanning calorimetry.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: May 11, 2021
    Inventors: Jae Ho Lim, Sung Yong Kang, Kyoung Min Kang, Hee-Jung Lee, Min Gyung Kim, Chang-Young Park, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Publication number: 20200316819
    Abstract: Provided is a method for manufacturing thermoplastic polymer particles, the method comprising the steps of: supplying a thermoplastic polymer resin to an extruder and extruding the same; supplying the extruded thermoplastic polymer resin and air to a nozzle, bringing the thermoplastic polymer resin into contact with the air to granulate the thermoplastic polymer resin, and then discharging the granulated thermoplastic polymer resin; and supplying discharged thermoplastic polymer particles to a cooling unit to cool the thermoplastic polymer particles, and then collecting the cooled thermoplastic polymer particles.
    Type: Application
    Filed: March 9, 2018
    Publication date: October 8, 2020
    Applicant: LG Hausys, Ltd.
    Inventors: Hee-Jung Lee, Sung Yong Kang, Kyoung Min Kang, Min Gyung Kim, Chang-Young Park, Jae Ho Lim, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Publication number: 20200071470
    Abstract: Provided are thermoplastic polymer particles having an aspect ratio of 1.00 or more and less than 1.05, and a roundness of 0.95 to 1.00. The thermoplastic polymer particles are formed from a thermoplastic polymer resin in a continuous matrix phase. The thermoplastic polymer particles show a peak cold crystallization temperature (Tcc) at a temperature between a glass transition temperature (Tg) and the melting point (Tm) in a differential scanning calorimetry (DSC) curve which is derived from temperature rise analysis at 10° C./min by differential scanning calorimetry.
    Type: Application
    Filed: March 9, 2018
    Publication date: March 5, 2020
    Applicant: LG Hausys, Ltd.
    Inventors: Jae Ho Lim, Sung Yong Kang, Kyoung Min Kang, Hee-Jung Lee, Min Gyung Kim, Chang-Young Park, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Publication number: 20200032049
    Abstract: The present invention provides polylactic acid particles, which are formed in a continuous matrix phase from a polylactic acid resin and have a particle diameter of 1 to 100 ?m. In a differential scanning calorimetry (DSC) curve of the polylactic acid particles, derived from the analysis by DSC using a temperature rise of 10° C./min, a peak of the cold crystallization temperature (Tcc) is shown at a temperature between the glass transition temperature (Tg) and the melting point (Tm). The polylactic acid particles have an aspect ratio of more than or equal to 1.00 and less than 1.05 and a roundness of 0.95 to 1.00. The polylactic acid particles have a flow time of 20 to 30 seconds.
    Type: Application
    Filed: March 9, 2018
    Publication date: January 30, 2020
    Applicant: LG Hausys, Ltd.
    Inventors: Kyoung Min Kang, Sung Yong Kang, Hee-Jung Lee, Min Gyung Kim, Chang-Young Park, Jae Ho Lim, Jun Ho Choi, Jae Han Song, Yu Jin Go
  • Publication number: 20200032005
    Abstract: The present invention provides thermoplastic polyurethane particles, which are formed in a continuous matrix phase from a thermoplastic polyurethane resin and have a particle diameter of 200-500 ?m. In a differential scanning calorimetry (DSC) curve of the thermoplastic polyurethane particles, derived from the analysis of a temperature rise of 10° C./min by DSC, a peak of the cold crystallization temperature (Tcc) is shown at a temperature between the glass transition temperature (Tg) and the melting point (Tm). The thermoplastic polyurethane particles have a compression degree of 10-20%.
    Type: Application
    Filed: March 9, 2018
    Publication date: January 30, 2020
    Applicant: LG Hausys, Ltd.
    Inventors: Min Gyung Kim, Sung Yong Kang, Kyoung Min Kang, Hee-Jung Lee, Chang-Young Park, Jae Ho Lim, Jun Ho Choi, Jae Han Song, Yu Jin Go