Patents by Inventor Jae Kug Ryu

Jae Kug Ryu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150110685
    Abstract: A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 23, 2015
    Inventors: ook jae Cho, Jae Kug Ryu, Bong Seok Kim, Donghyun Kim, Byounghun Park, su jin Park, Jin-A Jung, Daewoo Kim
  • Patent number: 8952209
    Abstract: A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 10, 2015
    Assignee: Foosung Co., Ltd.
    Inventors: ook jae Cho, Jae Kug Ryu, Bong Seok Kim, Donghyun Kim, Byounghun Park, su jin Park, Jin-A Jung, Daewoo Kim
  • Publication number: 20140135538
    Abstract: A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 15, 2014
    Applicant: FOOSUNG CO., LTD.
    Inventors: ook jae Cho, Jae Kug Ryu, Bong Seok Kim, Donghyun Kim, Byounghun Park, Su Jin Park, Jin-A Jung, Daewoo Kim