Patents by Inventor Jae-Mo Koo

Jae-Mo Koo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240075447
    Abstract: A device may include a plasma chamber in fluid communication with an ancillary reaction chamber and an integrated reformer. The integrated reformer may be in fluid communication with the ancillary reaction chamber. The ancillary reaction chamber may be configured to utilize heat from a heated first synthesis gas stream received from the plasma chamber to initiate an exothermic reaction with a second gas stream to output a heated second synthesis gas stream to the integrated reformer.
    Type: Application
    Filed: September 7, 2023
    Publication date: March 7, 2024
    Applicant: RECARBON, INC.
    Inventors: Hatem Harraz, Jae Mo Koo, Hee Seon Kim
  • Publication number: 20230226515
    Abstract: An integrated reformer includes an outer chamber, a first inlet, a second inlet, and a cooling unit associated with the outer chamber. The first inlet is configured to obtain a first gas stream into a first space in the outer chamber. The second inlet is configured to obtain a second gas stream into the first space in the outer chamber. The cooling unit is configured to absorb thermal energy from the first gas stream.
    Type: Application
    Filed: January 13, 2023
    Publication date: July 20, 2023
    Inventors: Hatem Harraz, Jae Mo Koo
  • Publication number: 20220293400
    Abstract: A plasma reaction system may include a plasma chamber and an ancillary reaction chamber. The plasma chamber may include a plasma chamber inlet for introducing reactant gases into the plasma chamber, plasma chamber walls that form an interior space in which chemical reactions between the reactant gases may occur, a plasma generated within the plasma chamber, a waveguide for directing energy towards the plasma generated within the plasma chamber, and a plasma chamber outlet for carrying first outlet gases from the plasma chamber. The ancillary reaction chamber may include an ancillary reaction chamber inlet configured to obtain the first outlet gases from the plasma chamber, ancillary reaction chamber walls that form an interior space of the ancillary reaction chamber in which second chemical reactions between the outlet gases may occur, and an ancillary reaction chamber outlet for carrying second outlet gases from the ancillary reaction chamber.
    Type: Application
    Filed: March 11, 2022
    Publication date: September 15, 2022
    Inventors: George Stephen Leonard, III, Stefan Andrew McClelland, John Joseph Rehagen, Jae Mo Koo
  • Patent number: 10854429
    Abstract: A plasma generating system includes a waveguide for transmitting a microwave energy therethrough and an inner wall disposed within the waveguide to define a plasma cavity, where a plasma is generated within the plasma cavity using the microwave energy. The plasma generating system further includes: an adaptor having a gas outlet through which an exhaust gas processed by the plasma exits the plasma cavity; and a recuperator directly attached to the adaptor and having a gas passageway that is in fluid communication with the gas outlet in the adaptor. The recuperator recovers heat energy from the exhaust gas and heats an input gas using the heat energy.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: December 1, 2020
    Assignee: RECARBON, INC.
    Inventors: George Stephen Leonard, III, Stefan Andrew McClelland, Jae Mo Koo
  • Patent number: 10832893
    Abstract: The present invention provides a plasma generating system that includes: a waveguide for transmitting a microwave energy therethrough; an inner wall disposed within the waveguide to define a plasma cavity, wherein a plasma is generated within the plasma cavity using the microwave energy; a first gas inlet mounted on a first side of the waveguide and configured to introduce a first gas into the plasma cavity and generate a first vortex flow within the plasma cavity using the first gas, the first gas inlet having a through hole through which a gas processed by the plasma exits the plasma cavity; and a plasma stabilizer having a shape of a circular hollow cylinder and installed on a second side of the waveguide, an axial direction of the plasma stabilizer being in parallel to a rotational axis of the first vortex flow.
    Type: Grant
    Filed: January 26, 2020
    Date of Patent: November 10, 2020
    Assignee: RECARBON, INC.
    Inventors: Stefan Andrew McClelland, George Stephen Leonard, III, Jae Mo Koo
  • Patent number: 10832894
    Abstract: A plasma generating system includes a waveguide for transmitting a microwave energy therethrough and an inner wall disposed within the waveguide to define a plasma cavity, where a plasma is generated within the plasma cavity using the microwave energy. The plasma generating system further includes: an adaptor mounted on a first side of the waveguide and physically separated from the waveguide by a first gap and having a gas outlet through which a gas processed by the plasma exits the plasma cavity; and an EM seal disposed in the first gap and configured to block leakage of the microwave energy through the first gap.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: November 10, 2020
    Assignee: RECARBON, INC.
    Inventors: Stefan Andrew McClelland, George Stephen Leonard, III, Jae Mo Koo
  • Publication number: 20200312638
    Abstract: A plasma generating system includes a waveguide for transmitting a microwave energy therethrough and an inner wall disposed within the waveguide to define a plasma cavity, where a plasma is generated within the plasma cavity using the microwave energy. The plasma generating system further includes: an adaptor having a gas outlet through which an exhaust gas processed by the plasma exits the plasma cavity; and a recuperator directly attached to the adaptor and having a gas passageway that is in fluid communication with the gas outlet in the adaptor. The recuperator recovers heat energy from the exhaust gas and heats an input gas using the heat energy.
    Type: Application
    Filed: February 28, 2020
    Publication date: October 1, 2020
    Applicant: ReCarbon, Inc.
    Inventors: George Stephen Leonard, III, Stefan Andrew McClelland, Jae Mo Koo
  • Publication number: 20200312629
    Abstract: The present invention provides a plasma generating system that includes: a plurality of plasma reactors. Each plurality of plasma reactors includes: a waveguide for transmitting a microwave energy therethrough; a plasma chamber coupled to the waveguide and configured to generate a plasma therein using the microwave energy; a gas inlet for introducing a gas into the plasma chamber; an exhaust gas pipe for carrying an exhaust gas from the plasma chamber, wherein the plasma converts the gas into the exhaust gas; and a pressure control device installed in the exhaust gas pipe and configured to control a pressure of the exhaust gas in the exhaust gas pipe. The plasma generating system also includes a manifold coupled to the exhaust gas pipes of the plurality of plasma reactors and configured to receive the exhaust gas from the exhaust gas pipes.
    Type: Application
    Filed: February 13, 2020
    Publication date: October 1, 2020
    Applicant: ReCarbon, Inc.
    Inventors: George Stephen Leonard, III, Stefan Andrew McClelland, Fei Xie, Wei Li, Curtis Peter Tom, Jae Mo Koo
  • Publication number: 20200312627
    Abstract: The present invention provides a plasma generating system that includes: a waveguide for transmitting a microwave energy therethrough; an inner wall disposed within the waveguide to define a plasma cavity, wherein a plasma is generated within the plasma cavity using the microwave energy; a first gas inlet mounted on a first side of the waveguide and configured to introduce a first gas into the plasma cavity and generate a first vortex flow within the plasma cavity using the first gas, the first gas inlet having a through hole through which a gas processed by the plasma exits the plasma cavity; and a plasma stabilizer having a shape of a circular hollow cylinder and installed on a second side of the waveguide, an axial direction of the plasma stabilizer being in parallel to a rotational axis of the first vortex flow.
    Type: Application
    Filed: January 26, 2020
    Publication date: October 1, 2020
    Applicant: ReCarbon, Inc.
    Inventors: Stefan Andrew McClelland, George Stephen Leonard, III, Jae Mo Koo
  • Publication number: 20200312628
    Abstract: A plasma generating system includes a waveguide for transmitting a microwave energy therethrough and an inner wall disposed within the waveguide to define a plasma cavity, where a plasma is generated within the plasma cavity using the microwave energy. The plasma generating system further includes: an adaptor mounted on a first side of the waveguide and physically separated from the waveguide by a first gap and having a gas outlet through which a gas processed by the plasma exits the plasma cavity; and an EM seal disposed in the first gap and configured to block leakage of the microwave energy through the first gap.
    Type: Application
    Filed: February 27, 2020
    Publication date: October 1, 2020
    Applicant: ReCarbon, Inc.
    Inventors: Stefan Andrew McClelland, George Stephen Leonard III, Jae Mo Koo
  • Patent number: 8968651
    Abstract: By focusing on the fact that nitrogen dioxide exhibits an increased sterilizing effect among other sterilant gases including nitrogen oxide, the present invention is made to provide a sterilization method which may be suitably used for sterilizing items to be sterilized such as medical instruments which require increased reliability by using a high concentration NO2 gas of 5,000 ppm or above, for example. An inside of a sterilizing chamber containing an item to be sterilized is humidified, and a concentration of NO2 in the sterilizing chamber is made to be from 9 to 100 mg/L by filling a high concentration NO2 gas.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: March 3, 2015
    Assignee: Noxilizer, Inc.
    Inventors: Hirofumi Hayashi, Tomoyuki Hirose, Kazuhiro Kimura, Masaaki Mike, Ryuichi Iwasaki, Shigeru Masuda, Toru Tanibata, Joongsoo Kim, Sang Hun Lee, Jae-Mo Koo, Orion Weihe, Andrew Way
  • Patent number: 8633648
    Abstract: A gas conversion system using microwave plasma is provided. The system includes: a microwave waveguide; a gas flow tube passing through a microwave waveguide and configured to transmit microwaves therethrough; a temperature controlling means for controlling a temperature of the microwave waveguide; a temperature sensor disposed near the gas flow tube and configured to measure a temperature of gas flow tube or microwave waveguide; an igniter located near the gas flow tube and configured to ignite a plasma inside the gas flow tube so that the plasma converts a gas flowing through the gas flow tube during operation; and a plasma detector located near the gas flow tube and configured to monitor the plasma.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 21, 2014
    Assignee: ReCarbon, Inc.
    Inventors: Toru Tanibata, Jae-Mo Koo, Sang Hun Lee
  • Patent number: 8580086
    Abstract: A high concentration NO2 gas generating system including a circulating path configured by connecting a chamber, a plasma generator, and a circulating means, wherein NO2 is generated by circulating a gas mixture including nitrogen and oxygen in the circulating path is provided. The high concentration NO2 gas generating system provides a high concentration NO2 generating system and the high concentration NO2 generating method using the generating system by which NO2 of high concentration (approximately 500 ppm or above) required for a high level of sterilization process in such as sterilization of medical instruments can be simply and selectively obtained. In addition, since indoor air is used as an ingredient, the management of ingredients is simple and highly safe, and the high concentration of NO2 can be simply and selectively prepared on demand.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: November 12, 2013
    Assignee: Noxilizer, Inc.
    Inventors: Hidetaka Matsuuchi, Tomoyuki Hirose, Ryuichi Iwasaki, Masaaki Mike, Shigeru Masuda, Hirofumi Hayashi, Toru Tanibata, Joongsoo Kim, Sang Hun Lee, Jae-Mo Koo, Orion Weihe, Andrew Way
  • Publication number: 20130220793
    Abstract: A high concentration NO2 gas generating system including a circulating path configured by connecting a chamber, a plasma generator, and a circulating means, wherein NO2 is generated by circulating a gas mixture including nitrogen and oxygen in the circulating path is provided. The high concentration NO2 gas generating system provides a high concentration NO2 generating system and the high concentration NO2 generating method using the generating system by which NO2 of high concentration (approximately 500 ppm or above) required for a high level of sterilization process in such as sterilization of medical instruments can be simply and selectively obtained. In addition, since indoor air is used as an ingredient, the management of ingredients is simple and highly safe, and the high concentration of NO2 can be simply and selectively prepared on demand.
    Type: Application
    Filed: March 18, 2013
    Publication date: August 29, 2013
    Applicant: SAIAN CORPORATION
    Inventors: Hidetaka Matsuuchi, Tomoyuki Hirose, Ryuichi Iwasaki, Masaaki Mike, Shigeru Masuda, Hirofumi Hayashi, Toru Tanibata, Joongsoo Kim, Sang Hun Lee, Jae-Mo Koo, Orion Weihe, Andrew Way
  • Patent number: 8425852
    Abstract: A high concentration NO2 gas generating system including a circulating path configured by connecting a chamber, a plasma generator, and a circulating means, wherein NO2 is generated by circulating a gas mixture including nitrogen and oxygen in the circulating path is provided. The high concentration NO2 gas generating system provides a high concentration NO2 generating system and the high concentration NO2 generating method using the generating system by which NO2 of high concentration (approximately 500 ppm or above) required for a high level of sterilization process in such as sterilization of medical instruments can be simply and selectively obtained. In addition, since indoor air is used as an ingredient, the management of ingredients is simple and highly safe, and the high concentration of NO2 can be simply and selectively prepared on demand.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 23, 2013
    Assignee: Saian Corporation
    Inventors: Hidetaka Matsuuchi, Tomoyuki Hirose, Ryuichi Iwasaki, Masaaki Mike, Shigeru Masuda, Hirofumi Hayashi, Toru Tanibata, Joongsoo Kim, Sang Hun Lee, Jae-Mo Koo, Orion Weihe, Andrew Way
  • Publication number: 20130002137
    Abstract: A gas conversion system using microwave plasma is provided. The system includes: a microwave waveguide; a gas flow tube passing through a microwave waveguide and configured to transmit microwaves therethrough; a temperature controlling means for controlling a temperature of the microwave waveguide; a temperature sensor disposed near the gas flow tube and configured to measure a temperature of gas flow tube or microwave waveguide; an igniter located near the gas flow tube and configured to ignite a plasma inside the gas flow tube so that the plasma converts a gas flowing through the gas flow tube during operation; and a plasma detector located near the gas flow tube and configured to monitor the plasma.
    Type: Application
    Filed: June 19, 2012
    Publication date: January 3, 2013
    Applicant: AMARANTE TECHNOLOGIES, INC.
    Inventors: Toru Tanibata, Jae-Mo Koo, Sang Hun Lee
  • Publication number: 20120235569
    Abstract: Systems for generating microwave plasma from a combustion flame. The present invention provides a microwave plasma nozzle that includes a hollow cylindrical housing through which combustible material flows, and a rod-shaped conductor disposed in the housing. A portion of the rod-shaped conductor extends into a microwave cavity to receive microwaves passing in the cavity. The rod-shaped conductor transmits microwaves along the surface thereof, and has a distal end disposed in proximity to and surrounded by a proximal end portion of the housing. During operation, a combustion flame is formed in proximity to the proximal end portion of the housing, and the microwaves transmitted along the surface heat up the flame to generate plasma in proximity to the distal end of the rod-shaped conductor.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 20, 2012
    Applicant: AMARANTE TECHNOLOGIES, INC/
    Inventors: Sang Hun Lee, Joong Soo Kim, Jae-mo Koo, Orion Weihe, Andrew Way, Richard Warfield
  • Publication number: 20110286908
    Abstract: A high concentration NO2 gas generating system including a circulating path configured by connecting a chamber, a plasma generator, and a circulating means, wherein NO2 is generated by circulating a gas mixture including nitrogen and oxygen in the circulating path is provided. The high concentration NO2 gas generating system provides a high concentration NO2 generating system and the high concentration NO2 generating method using the generating system by which NO2 of high concentration (approximately 500 ppm or above) required for a high level of sterilization process in such as sterilization of medical instruments can be simply and selectively obtained. In addition, since indoor air is used as an ingredient, the management of ingredients is simple and highly safe, and the high concentration of NO2 can be simply and selectively prepared on demand.
    Type: Application
    Filed: March 3, 2010
    Publication date: November 24, 2011
    Applicant: SAIAN CORPORATION
    Inventors: Hidetaka Matsuuchi, Tomoyuki Hirose, Ryuichi Iwasaki, Masaaki Mike, Shigeru Masuda, Hirofumi Hayashi, Toru Tanibata, Joongsoo Kim, Sang Hun Lee, Jae-Mo Koo, Orion Weihe, Andrew Way
  • Publication number: 20110274583
    Abstract: By focusing on the fact that nitrogen dioxide exhibits an increased sterilizing effect among other sterilant gases including nitrogen oxide, the present invention is made to provide a sterilization method which may be suitably used for sterilizing items to be sterilized such as medical instruments which require increased reliability by using a high concentration NO2 gas of 5,000 ppm or above, for example. An inside of a sterilizing chamber containing an item to be sterilized is humidified, and a concentration of NO2 in the sterilizing chamber is made to be from 9 to 100 mg/L by filling a high concentration NO2 gas.
    Type: Application
    Filed: March 10, 2010
    Publication date: November 10, 2011
    Applicant: SAIAN CORPORATION
    Inventors: Hirofumi Hayashi, Tomoyuki Hirose, Kazuhiro Kimura, Masaaki Mike, Ryuichi Iwasaki, Shigeru Masuda, Toru Tanibata, Joongsoo Kim, Sang Hun Lee, Jae-Mo Koo, Orion Weihe, Andrew Way
  • Publication number: 20100254863
    Abstract: A sterilant gas generating system includes a chamber for containing gas; a gas converting device having a gas inlet and a gas outlet connected to the chamber and adapted to convert gas received through the gas inlet into a sterilant gas and to eject the sterilant gas into the chamber through the gas outlet; and a gas recirculating mechanism coupled to the chamber and the gas inlet of the converting means and operative to move the gas contained in the chamber to the gas inlet of the gas converting device.
    Type: Application
    Filed: April 6, 2009
    Publication date: October 7, 2010
    Inventors: Sang Hun Lee, Joong Soo Kim, Jae-Mo Koo, Andrew Way, Orion Weihe, Jeff Ifland