Patents by Inventor Jae Stelzer

Jae Stelzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220378408
    Abstract: Connectors for connecting or linking one instrument or object to one or more other instruments or objects are disclosed herein. In some embodiments, a connector can include a first arm with a first attachment feature for attaching to a first object, such as a surgical access device, and a second arm with a second attachment feature for attaching to a second object, such as a support. The connector can have an unlocked state, in which the position and orientation of the access device can be adjusted relative to the support, and a locked state in which movement of the access device relative to the support is prevented or limited. Locking the connector can also be effective to clamp or otherwise attach the connector to the access device and the support, or said attachment can be independent of the locking of the connector.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Daniel Thommen, Eric Buehlmann, Joern Richter, Peter Senn, Veronique Christine Zollmann, Thomas Gamache, Roman Lomeli, Nicholas Pavento, J. Riley Hawkins, Jae Stelzer
  • Patent number: 11439380
    Abstract: Connectors for connecting or linking one instrument or object to one or more other instruments or objects are disclosed herein. In some embodiments, a connector can include a first arm with a first attachment feature for attaching to a first object, such as a surgical access device, and a second arm with a second attachment feature for attaching to a second object, such as a support. The connector can have an unlocked state, in which the position and orientation of the access device can be adjusted relative to the support, and a locked state in which movement of the access device relative to the support is prevented or limited. Locking the connector can also be effective to clamp or otherwise attach the connector to the access device and the support, or said attachment can be independent of the locking of the connector.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: September 13, 2022
    Assignee: Medos International Sarl
    Inventors: Daniel Thommen, Eric Buehlmann, Joern Richter, Peter Senn, Veronique Christine Zollmann, Thomas Gamache, Roman Lomeli, Nicholas Pavento, J. Riley Hawkins, Jae Stelzer
  • Publication number: 20220249115
    Abstract: Embodiments of bone and tissue resection devices are disclosed herein. In one embodiment, a device can include a stationary assembly having a housing, an elongated sleeve extending distally from the housing, and a cutting region disposed distal to the sleeve. The device can further include a drive assembly having a blade shaft extending through the elongated sleeve, the blade shaft having a distal tip with a cutting surface configured to extend into the cutting region when the drive assembly advances distally relative to the stationary assembly. The drive assembly can further include an oscillator coupled to the blade shaft and configured to engage with a source of continuous rotational motion to convert the continuous rotational motion into oscillating motion of the drive shaft. Further, the drive assembly can be configured to slidably couple to the stationary assembly to permit selective translation of the drive assembly relative to the stationary assembly.
    Type: Application
    Filed: April 25, 2022
    Publication date: August 11, 2022
    Inventors: Stephen Bornhoft, Jae Stelzer, John C. Voellmicke, Roman Lomeli, Thomas Gamache
  • Patent number: 11324530
    Abstract: Embodiments of bone and tissue resection devices are disclosed herein. In one embodiment, a device can include a stationary assembly having a housing, an elongated sleeve extending distally from the housing, and a cutting region disposed distal to the sleeve. The device can further include a drive assembly having a blade shaft extending through the elongated sleeve, the blade shaft having a distal tip with a cutting surface configured to extend into the cutting region when the drive assembly advances distally relative to the stationary assembly. The drive assembly can further include an oscillator coupled to the blade shaft and configured to engage with a source of continuous rotational motion to convert the continuous rotational motion into oscillating motion of the drive shaft. Further, the drive assembly can be configured to slidably couple to the stationary assembly to permit selective translation of the drive assembly relative to the stationary assembly.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 10, 2022
    Assignee: Medos International Sarl
    Inventors: Stephen Bornhoft, Jae Stelzer, John C. Voellmicke, Roman Lomeli, Thomas Gamache
  • Publication number: 20210401450
    Abstract: Access port cutters and related systems and methods can be used to cut an access port to a desired length based on particular patient and/or surgical procedure needs at a point of use. More particularly, an access port cutter can include a base with an opening that can receive an access port therein such that a desired length of the access port can extend from the opening. An actuation mechanism can translate a blade linearly along at least a portion of the base such that the blade can traverse the opening and cut across the access port. In some embodiments, the actuation mechanism can include a handle that can pivot relative to the base to drive the blade. One or more safety features can reduce the risk of inadvertent actuation of the blade and/or prevent debris from contaminating a surgical site or falling onto a patient.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Inventors: Roman Lomeli, Jae Stelzer, Nicholas Pavento, Alicia McDermott, Paul Maguire, Christopher Ramsay
  • Publication number: 20200330115
    Abstract: Embodiments of bone and tissue resection devices are disclosed herein. In one embodiment, a device can include a stationary assembly having a housing, an elongated sleeve extending distally from the housing, and a cutting region disposed distal to the sleeve. The device can further include a drive assembly having a blade shaft extending through the elongated sleeve, the blade shaft having a distal tip with a cutting surface configured to extend into the cutting region when the drive assembly advances distally relative to the stationary assembly. The drive assembly can further include an oscillator coupled to the blade shaft and configured to engage with a source of continuous rotational motion to convert the continuous rotational motion into oscillating motion of the drive shaft. Further, the drive assembly can be configured to slidably couple to the stationary assembly to permit selective translation of the drive assembly relative to the stationary assembly.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Inventors: Stephen Bornhoft, Jae Stelzer, John C. Voellmicke, Roman Lomeli, Thomas Gamache
  • Publication number: 20190216454
    Abstract: Connectors for connecting or linking one instrument or object to one or more other instruments or objects are disclosed herein. In some embodiments, a connector can include a first arm with a first attachment feature for attaching to a first object, such as a surgical access device, and a second arm with a second attachment feature for attaching to a second object, such as a support. The connector can have an unlocked state, in which the position and orientation of the access device can be adjusted relative to the support, and a locked state in which movement of the access device relative to the support is prevented or limited. Locking the connector can also be effective to clamp or otherwise attach the connector to the access device and the support, or said attachment can be independent of the locking of the connector.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: Daniel Thommen, Eric Buehlmann, Joern Richter, Peter Senn, Veronique Christine Zollmann, Thomas Gamache, Roman Lomeli, Nicholas Pavento, J. Riley Hawkins, Jae Stelzer