Patents by Inventor Jae-uk Chu
Jae-uk Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20190309197Abstract: A thermal adhesive containing a resin component includes an epoxy resin and an inorganic filler, where the inorganic filler includes tetrapod zinc oxide and alumina nanofiber, where the inorganic filler may further include at least one selected from among spherical alumina, AlN and BN, and where the resin component may further include a curing agent and a catalyst.Type: ApplicationFiled: April 2, 2019Publication date: October 10, 2019Inventors: Jae-Uk CHU, Chang-Kook JANG, Seon-Ja SONG, Seung-Won SONG
-
Patent number: 9920231Abstract: Provided is a thermal compound composition having heat dissipation and electrical insulation properties, where the thermal compound composition includes a Cu—CuO composite filler having a Cu core and a shell composed of CuO having a whisker crystal structure. The CuO having the whisker crystal structure is prepared by reacting Cu particles in a basic solution so that an outer shell thereof is grown into whisker-shaped CuO.Type: GrantFiled: March 14, 2017Date of Patent: March 20, 2018Assignee: YOUNGYIEL PRECISION CO., LTD.Inventors: Dong-Wook Chu, Jae-Uk Chu, Dong-Woo Lee, Chang-Hyun Um
-
Publication number: 20170292052Abstract: Provided is a thermal compound composition having heat dissipation and electrical insulation properties, where the thermal compound composition includes a Cu—CuO composite filler having a Cu core and a shell composed of CuO having a whisker crystal structure. The CuO having the whisker crystal structure is prepared by reacting Cu particles in a basic solution so that an outer shell thereof is grown into whisker-shaped CuO.Type: ApplicationFiled: March 14, 2017Publication date: October 12, 2017Inventors: Dong-Wook CHU, Jae-Uk CHU, Dong-Woo LEE, Chang-Hyun UM
-
Patent number: 8083905Abstract: The internal and external walls of the carbon nanotubes are doped with nano-sized metallic catalyst particles uniformly to a degree of 0.3-5 mg /cm2. The carbon nanotubes are grown over a carbon substrate using chemical vapor deposition or plasma enhanced chemical vapor deposition. Since the carbon nanotubes have a large specific surface area, and metallic catalyst particles are uniformly distributed over the internal and external walls thereof, the reaction efficiency in an electrode becomes maximal when the carbon nanotubes are used for the electrode of a fuel cell. The carbon nanotubes fabricated using the method can be applied to form a large electrode. The carbon nanotubes grown over the carbon substrate can be readily applied to an electrode of a fuel cell, providing economical advantages and simplifying the overall electrode manufacturing process. A fuel cell using as the carbon nanotubes for its electrode provides improved performance.Type: GrantFiled: July 29, 2009Date of Patent: December 27, 2011Assignee: Samsung SDI Co., Ltd.Inventors: Won-bong Choi, Jae-uk Chu, Chan-ho Pak, Hyuk Chang
-
Publication number: 20100018851Abstract: Carbon nanotubes for use in a fuel cell, a method for fabricating the same, and a fuel cell using the carbon nanotubes for its electrode are provided. The internal and external walls of the carbon nanotubes are doped with nano-sized metallic catalyst particles uniformly to a degree of 0.3-5 mg/cm2. The carbon nanotubes are grown over a carbon substrate using chemical vapor deposition or plasma enhanced chemical vapor deposition. Since the carbon nanotubes have a large specific surface area, and metallic catalyst particles are uniformly distributed over the internal and external walls thereof, the reaction efficiency in an electrode becomes maximal when the carbon nanotubes are used for the electrode of a fuel cell. The carbon nanotubes fabricated using the method can be applied to form a large electrode. The carbon nanotubes grown over the carbon substrate can be readily applied to an electrode of a fuel cell, providing economical advantages and simplifying the overall electrode manufacturing process.Type: ApplicationFiled: July 29, 2009Publication date: January 28, 2010Applicant: SAMSUNG SDI Co., Ltd.Inventors: Won-bong CHOI, Jae-uk Chu, Chan-ho Park, Hyuk Chang
-
Patent number: 7585584Abstract: Carbon nanotubes for use in a fuel cell, a method for fabricating the same, and a fuel cell using the carbon nanotubes for its electrode are provided. The internal and external walls of the carbon nanotubes are doped with nano-sized metallic catalyst particles uniformly to a degree of 0.3-5 mg/cm2. The carbon nanotubes are grown over a carbon substrate using chemical vapor deposition or plasma enhanced chemical vapor deposition. Since the carbon nanotubes have a large specific surface area, and metallic catalyst particles are uniformly distributed over the internal and external walls thereof, the reaction efficiency in an electrode becomes maximal when the carbon nanotubes are used for the electrode of a fuel cell. The carbon nanotubes fabricated using the method can be applied to form a large electrode. The carbon nanotubes grown over the carbon substrate can be readily applied to an electrode of a fuel cell, providing economical advantages and simplifying the overall electrode manufacturing process.Type: GrantFiled: June 24, 2003Date of Patent: September 8, 2009Assignee: Samsung SDI Co., Ltd.Inventors: Won-bong Choi, Jae-uk Chu, Chan-ho Pak, Hyuk Chang
-
Patent number: 7378328Abstract: A fast, reliable, highly integrated memory device formed of a carbon nanotube memory device and a method for forming the same, in which the carbon nanotube memory device includes a substrate, a source electrode, a drain electrode, a carbon nanotube having high electrical and thermal conductivity, a memory cell having excellent charge storage capability, and a gate electrode. The source electrode and drain electrode are arranged with a predetermined interval between them on the substrate and are subjected to a voltage. The carbon nanotube connects the source electrode to the drain electrode and serves as a channel for charge movement. The memory cell is located over the carbon nanotube and stores charges from the carbon nanotube. The gate electrode is formed in contact with the upper surface of the memory cell and controls the amount of charge flowing from the carbon nanotube into the memory cell.Type: GrantFiled: February 13, 2006Date of Patent: May 27, 2008Assignee: Samsung Electronics Co., Ltd.Inventors: Won-bong Choi, In-kyeong Yoo, Jae-uk Chu
-
Publication number: 20060252276Abstract: A fast, reliable, highly integrated memory device formed of a carbon nanotube memory device and a method for forming the same, in which the carbon nanotube memory device includes a substrate, a source electrode, a drain electrode, a carbon nanotube having high electrical and thermal conductivity, a memory cell having excellent charge storage capability, and a gate electrode. The source electrode and drain electrode are arranged with a predetermined interval between them on the substrate and are subjected to a voltage. The carbon nanotube connects the source electrode to the drain electrode and serves as a channel for charge movement. The memory cell is located over the carbon nanotube and stores charges from the carbon nanotube. The gate electrode is formed in contact with the upper surface of the memory cell and controls the amount of charge flowing from the carbon nanotube into the memory cell.Type: ApplicationFiled: February 13, 2006Publication date: November 9, 2006Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Won-bong Choi, In-kyeong Yoo, Jae-uk Chu
-
Patent number: 7015500Abstract: A fast, reliable, highly integrated memory device formed of a carbon nanotube memory device and a method for forming the same, in which the carbon nanotube memory device includes a substrate, a source electrode, a drain electrode, a carbon nanotube having high electrical and thermal conductivity, a memory cell having excellent charge storage capability, and a gate electrode. The source electrode and drain electrode are arranged with a predetermined interval between them on the substrate and are subjected to a voltage. The carbon nanotube connects the source electrode to the drain electrode and serves as a channel for charge movement. The memory cell is located over the carbon nanotube and stores charges from the carbon nanotube. The gate electrode is formed in contact with the upper surface of the memory cell and controls the amount of charge flowing from the carbon nanotube into the memory cell.Type: GrantFiled: February 10, 2003Date of Patent: March 21, 2006Assignee: Samsung Electronics Co., Ltd.Inventors: Won-bong Choi, In-kyeong Yoo, Jae-uk Chu
-
Publication number: 20040018416Abstract: Carbon nanotubes for use in a fuel cell, a method for fabricating the same, and a fuel cell using the carbon nanotubes for its electrode are provided. The internal and external walls of the carbon nanotubes are doped with nano-sized metallic catalyst particles uniformly to a degree of 0.3-5 mg/cm2. The carbon nanotubes are grown over a carbon substrate using chemical vapor deposition or plasma enhanced chemical vapor deposition. Since the carbon nanotubes have a large specific surface area, and metallic catalyst particles are uniformly distributed over the internal and external walls thereof, the reaction efficiency in an electrode becomes maximal when the carbon nanotubes are used for the electrode of a fuel cell. The carbon nanotubes fabricated using the method can be applied to form a large electrode. The carbon nanotubes grown over the carbon substrate can be readily applied to an electrode of a fuel cell, providing economical advantages and simplifying the overall electrode manufacturing process.Type: ApplicationFiled: June 24, 2003Publication date: January 29, 2004Applicant: Samsung SDI Co., Ltd.Inventors: Won-Bong Choi, Jae-Uk Chu, Chan-Ho Pak, Hyuk Chang
-
Publication number: 20030170930Abstract: A fast, reliable, highly integrated memory device formed of a carbon nanotube memory device and a method for forming the same, in which the carbon nanotube memory device includes a substrate, a source electrode, a drain electrode, a carbon nanotube having high electrical and thermal conductivity, a memory cell having excellent charge storage capability, and a gate electrode. The source electrode and drain electrode are arranged with a predetermined interval between them on the substrate and are subjected to a voltage. The carbon nanotube connects the source electrode to the drain electrode and serves as a channel for charge movement. The memory cell is located over the carbon nanotube and stores charges from the carbon nanotube. The gate electrode is formed in contact with the upper surface of the memory cell and controls the amount of charge flowing from the carbon nanotube into the memory cell.Type: ApplicationFiled: February 10, 2003Publication date: September 11, 2003Applicant: Samsung Electronics Co., Ltd.Inventors: Won-bong Choi, In-kyeong Yoo, Jae-uk Chu