Patents by Inventor Jaeshin Cho

Jaeshin Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240086354
    Abstract: A system on chip, semiconductor device, and/or method are provided that include a plurality of masters, an interface, and a semaphore unit. The interface interfaces the plurality of masters with a slave device. The semaphore unit detects requests of the plurality of masters, controlling the salve device, about an access to the interface and assigns a semaphore about each of the plurality of masters by a specific operation unit according to the detection result.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: DongSik CHO, Jeonghoon KIM, Rohitaswa BHATTACHARYA, Jaeshin LEE, Honggi JEONG
  • Patent number: 11380625
    Abstract: A semiconductor package structure is provided. The semiconductor package structure includes a first device, a second device, and a shielding structure. The first device and the second device is one a first side of a substrate. The shielding structure includes a first portion and a second portion. The first portion is between the first device and the second device on the substrate, and the first portion includes a plurality of first shielding units arranged along a first direction. The second portion is between the first device and the second device, and the second portion includes a plurality of second shielding units arranged along a second direction different from the first direction. The second portion is configured as a first waveguide between the first device and the second device.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: July 5, 2022
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING KOREA, INC.
    Inventors: Soonheung Bae, Jyhwan Lee, Jaeshin Cho
  • Publication number: 20220068831
    Abstract: A semiconductor package structure is provided. The semiconductor package structure includes a first device, a second device, and a shielding structure. The first device and the second device is one a first side of a substrate. The shielding structure includes a first portion and a second portion. The first portion is between the first device and the second device on the substrate, and the first portion includes a plurality of first shielding units arranged along a first direction. The second portion is between the first device and the second device, and the second portion includes a plurality of second shielding units arranged along a second direction different from the first direction. The second portion is configured as a first waveguide between the first device and the second device.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 3, 2022
    Applicant: Advanced Semiconductor Engineering Korea, Inc.
    Inventors: Soonheung BAE, Jyhwan LEE, Jaeshin CHO
  • Patent number: 6334929
    Abstract: A process for improving uniformity across the surface of a substrate during a plasma process such as plasma etching. A conductive plane is formed at the back surface of the substrate. A plasma process is then performed to the front surface of the substrate. The conductive plane may then be removed upon completion of the plasma process and before final processing steps.
    Type: Grant
    Filed: July 29, 1994
    Date of Patent: January 1, 2002
    Assignee: Motorola, Inc.
    Inventors: Kelly W. Kyler, Fred Clayton, James H. Williams, Jaeshin Cho, Craig L. Jasper
  • Patent number: 6057219
    Abstract: An ohmic contact to a III-V semiconductor material is fabricated by dry etching a silicon nitride layer overlying the III-V semiconductor material with a chemical comprised of a group VI element. An ohmic metal layer is formed on the III-V semiconductor material after the silicon nitride layer is etched and before any exposure of the III-V semiconductor material to a chemical which etches the III-V semiconductor material or removes the group VI element.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: May 2, 2000
    Assignee: Motorola, Inc.
    Inventors: Jaeshin Cho, Gregory L. Hansell, Naresh Saha
  • Patent number: 5707901
    Abstract: An etch stop layer prevents damage to the underlying semiconductor material or metallization layer during etching of a dielectric layer overlying the etch stop layer. The etch stop layer, aluminum nitride or aluminum oxide is used underlying silicon dioxide to prevent damage to the semiconductor material during a fluorocarbon based etch of the silicon dioxide. The etch stop layer is also used underlying a silicon dioxide layer and overlying a titanium nitride or titanium tungsten layer used in metallization to prevent etching of the titanium nitride or titanium tungsten layer during etching of the silicon dioxide.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: January 13, 1998
    Assignee: Motorola, Inc.
    Inventors: Jaeshin Cho, Naresh Saha
  • Patent number: 5619064
    Abstract: A manufacturable III-V semiconductor gate structure having small geometries is fabricated. A silicon nitride layer is formed on a III-V semiconductor material and a dielectric layer comprised of aluminum is formed on the silicon nitride layer. Another dielectric layer comprised of silicon and oxygen is formed over the dielectric layer comprised of aluminum. The dielectric layer comprised of aluminum acts as an etch stop for the etching of the dielectric layer comprised of silicon and oxygen with a high power reactive ion etch. The dielectric layer comprised of aluminum may then be etched with a wet etchant which does not substantially etch the silicon nitride layer. Damage to the surface of the semiconductor material by exposure to the high power reactive ion etch is prevented by forming the dielectric layer comprised of aluminum between the silicon nitride layer and the dielectric layer comprised of silicon and oxygen.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: April 8, 1997
    Assignee: Motorola, Inc.
    Inventor: Jaeshin Cho
  • Patent number: 5583355
    Abstract: A III-V semiconductor FET (10, 30, 40) having etched ohmic contacts (19, 20, 36, 37, 43, 44). A gate (16) of the FET (10, 30, 40) is formed in contact with a surface of a III-V substrate (11). An ohmic contact (19, 20, 36, 37, 43, 44) is created to include an alloy in contact with the surface of the substrate (11). The ohmic contact (19, 20, 36, 37, 43, 44) is formed to abut the gate structure (16, 17, 18) by covering a portion of the gate structure (16, 17, 18) and the substrate (11) with the ohmic contact (19, 20, 36, 37, 43, 44), then, removing portions of the ohmic contact from the gate structure (16, 17, 18) by etching. The ohmic contact (19, 20, 36, 37, 43, 44) is formed to be substantially devoid of gold.
    Type: Grant
    Filed: December 13, 1995
    Date of Patent: December 10, 1996
    Assignee: Motorola, Inc.
    Inventors: Bruce A. Bernhardt, Jaeshin Cho, Gregory L. Hansell, Schyi-Yi Wu
  • Patent number: 5512518
    Abstract: A manufacturable III-V semiconductor structure having small geometries is fabricated. A silicon nitride layer is formed on a III-V semiconductor material and a dielectric layer comprised of aluminum is formed on the silicon nitride layer. Another dielectric layer comprised of silicon and oxygen is formed over the dielectric layer comprised of aluminum. The dielectric layer comprised of aluminum acts as an etch stop for the etching of the dielectric layer comprised of silicon and oxygen with a high power reactive ion etch. The dielectric layer comprised of aluminum may then be etched with a wet etchant which does not substantially etch the silicon nitride layer. Damage to the surface of the semiconductor material by exposure to the high power reactive ion etch is prevented by forming the dielectric layer comprised of aluminum between the silicon nitride layer and the dielectric layer comprised of silicon and oxygen.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: April 30, 1996
    Assignee: Motorola, Inc.
    Inventors: Jaeshin Cho, Kelly W. Kyler, Wayne A. Cronin, Mark Durlam, Jonathan K. Abrokwah
  • Patent number: 5484740
    Abstract: A manufacturable III-V semiconductor gate structure having small geometries is fabricated. A silicon nitride layer is formed on a III-V semiconductor material and a dielectric layer comprised of aluminum is formed on the silicon nitride layer. Another dielectric layer comprised of silicon and oxygen is formed over the dielectric layer comprised of aluminum. The dielectric layer comprised of aluminum acts as an etch stop for the etching of the dielectric layer comprised of silicon and oxygen with a high power reactive ion etch. The dielectric layer comprised of aluminum may then be etched with a wet etchant which does not substantially etch the silicon nitride layer. Damage to the surface of the semiconductor material by exposure to the high power reactive ion etch is prevented by forming the dielectric layer comprised of aluminum between the silicon nitride layer and the dielectric layer comprised of silicon and oxygen.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: January 16, 1996
    Assignee: Motorola, Inc.
    Inventor: Jaeshin Cho
  • Patent number: 5444016
    Abstract: The present invention encompasses a method for providing the same ohmic material contact (120, 122, 124) to N-type and P-type regions (70, 80) of a III-V semiconductor device. Specifically, an N-type region (70) extending through a semiconductor structure is formed. Additionally, a P-type region (80) extending through the substrate is formed. The P-type region (80) may be heavily doped with P-type impurities (81). A first ohmic region (117) is formed, contacting the N-type region (70). The first ohmic region may comprise an ohmic material including metal and an N-type dopant. A second ohmic region (119) is formed, contacting the P-type region (80, 81). The second ohmic region comprises the same ohmic material as the first ohmic region. One ohmic material that may be used is nickel-germanium-tungsten.
    Type: Grant
    Filed: June 25, 1993
    Date of Patent: August 22, 1995
    Inventors: Jonathan K. Abrokwah, Jenn-Hwa Huang, Jaeshin Cho
  • Patent number: 5389564
    Abstract: The present invention provides a III-V semiconductor FET (10, 30, 40) having etched ohmic contacts (19, 20, 36, 37, 43, 44). A gate (16) of the FET (10, 30, 40) is formed in contact with a surface of a III-V substrate (11). An ohmic contact (19, 20, 36, 37, 43, 44) is created to include an alloy in contact with the surface of the substrate (11). The ohmic contact (19, 20, 36, 37, 43, 44) is formed to abut the gate structure (16, 17, 18) by covering a portion of the gate structure (16, 17, 18) and the substrate (11) with the ohmic contact (19, 20, 36, 37, 43, 44), then, removing portions of the ohmic contact from the gate structure (16, 17, 18) by etching. The ohmic contact (19, 20, 36, 37, 43, 44) is formed to be substantially devoid of gold.
    Type: Grant
    Filed: June 22, 1992
    Date of Patent: February 14, 1995
    Assignee: Motorola, Inc.
    Inventors: Bruce A. Bernhardt, Jaeshin Cho, Gregory L. Hansell
  • Patent number: 5387548
    Abstract: The present invention includes forming an etched ohmic contact (10, 9) by applying a layer of an etch susceptible contact material (14) to a III-V semiconductor substrate (11). A portion of the contact layer (14A) is alloyed with the substrate (11) to form are etch resistant area (14A) of the contact layer. The contact layer (14) is selectively etched to remove etch susceptible portions of the contact layer while leaving the etch resistant area (14A) on the substrate (11). Another alloy operation is performed to form ohmic contact between the etch resistant area (14A) and the substrate (11). Consequently, an etch ohmic contact (10, 9) that is substantially devoid of gold is formed.
    Type: Grant
    Filed: October 4, 1993
    Date of Patent: February 7, 1995
    Assignee: Motorola, Inc.
    Inventor: Jaeshin Cho
  • Patent number: 5384269
    Abstract: A method for making a shallow junction in a gallium arsenide substrate including implanting doping ions into an upper surface of the substrate and incorporating sulfur into the upper surface of the substrate after the ion implantation. A capping layer is deposited on the upper surface and the substrate is heat annealed to activate the doping atoms.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: January 24, 1995
    Assignee: Motorola, Inc.
    Inventor: Jaeshin Cho