Patents by Inventor Jai-Dong Lee

Jai-Dong Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7902059
    Abstract: In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Jai-Dong Lee, Young-Seok Kim, Young-Sub You, Ki-Su Na, Woong Lee
  • Patent number: 7736963
    Abstract: In an embodiment, a method of forming a gate structure for a semiconductor device includes forming a preliminary gate structure on a semiconductor substrate. The preliminary gate structure includes a gate oxide pattern and a conductive pattern sequentially stacked on the substrate. Then, a re-oxidation process is performed to the substrate having the preliminary gate structure using an oxygen radical including at least one oxygen atom, so that an oxide layer is formed on a surface of the substrate and sidewalls of the preliminary gate structure to form the gate structure for a semiconductor device. The thickness of the gate oxide pattern is prevented from increasing, and the quality of the oxide layer is improved.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: June 15, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong Lee, Young-Sub You, Hun-Hyeoung Leam, Yong-Woo Hyung, Jai-Dong Lee, Ki-Su Na, Jung-Hwan Kim
  • Publication number: 20100048015
    Abstract: In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
    Type: Application
    Filed: October 29, 2009
    Publication date: February 25, 2010
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Jai-Dong Lee, Young-Seok Kim, Young-Sub You, Ki-Su Na, Woong Lee
  • Patent number: 7629217
    Abstract: In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: December 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Jai-Dong Lee, Young-Seok Kim, Young-Sub You, Ki-Su Na, Woong Lee
  • Patent number: 7592227
    Abstract: Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: September 22, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Sun Lee, Jai-Dong Lee, Bong-Hyun Kim, Man-Sug Kang, Jung-Hwan Kim, Hyun-Jin Shin, Won-Seok Yoo, Seung-Mok Shin
  • Patent number: 7459364
    Abstract: A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: December 2, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Lee, Hun-Hyeoung Leam, Jai-Dong Lee, Jung-Hwan Kim, Young-Sub You, Ki-Su Na, Woong Lee, Yong-Sun Lee, Won-Jun Jang
  • Patent number: 7361560
    Abstract: A method for manufacturing a dielectric layer structure for a non-volatile memory cell is provided. A method includes forming a first dielectric layer for tunneling on a semiconductor substrate, a second dielectric layer on the first dielectric layer to store charges, nitrogenizing surface of the second dielectric layer, and forming a third dielectric layer the nitridedsecond dielectric layer.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: April 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jai-Dong Lee, Ki-Chul Kim, In-Wook Cho
  • Patent number: 7223657
    Abstract: Methods of fabricating a floating gate of a flash memory cell are provided in which a first polysilicon layer is formed between first and second isolation layers. An upper region of the first polysilicon layer is then oxidized. The oxidized upper region of the first polysilicon layer is subsequently removed. A second polysilicon layer is formed on the first polysilicon layer. The second polysilicon layer and the first polysilicon layer are patterned to form the floating gate.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: May 29, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-Jun Jang, Jung-Hwan Kim, Jai-Dong Lee, Young-sub You, Sang-Hun Lee, Hun-Hyeoung Leam
  • Publication number: 20070010068
    Abstract: Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode.
    Type: Application
    Filed: July 7, 2006
    Publication date: January 11, 2007
    Inventors: Yong-Sun Lee, Jai-Dong Lee, Bong-Hyun Kim, Man-Sug Kang, Jung-Hwan Kim, Hyun-Jin Shin, Won-Seok Yoo, Seung-Mok Shin
  • Patent number: 7153362
    Abstract: A system and method for real time deposition process control based on resulting product detection, where the system and method detect an amount of at least one reaction product in real time, while the deposition process is being performed, the detected amount of reaction product is compared with a reference amount, and a comparison result is fed back in real time to adjust a supply of one or more reactants. The system and method provide real time control over the deposition process and/or reduce the number of wafers produced that do not meet processing target values.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: December 26, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Ko, Jai-Dong Lee, Jin-Hee Lee
  • Publication number: 20060134925
    Abstract: In an exemplary embodiment of the invention a method of forming a gate oxide layer of a semiconductor device uses deuterium gas. The method includes introducing a semiconductor substrate, and depositing an insulating layer on the semiconductor substrate by supplying an oxidation reaction gas and a deuterium gas to the semiconductor substrate. Thus, a high quality gate oxide layer can be formed and resistance to degradation from the hot carrier effect can be improved. Further, when the method is applied to a tunnel oxide layer process of a flash memory, problems such as an increasing dispersion of the threshold voltage can be mitigated.
    Type: Application
    Filed: December 13, 2005
    Publication date: June 22, 2006
    Inventors: Jai-Dong Lee, Jung-Hwan Kim, Woong Lee, Hun-Hyeoung Leam, Sang-Hun Lee
  • Publication number: 20060073653
    Abstract: Methods of fabricating a floating gate of a flash memory cell are provided in which a first polysilicon layer is formed between first and second isolation layers. An upper region of the first polysilicon layer is then oxidized. The oxidized upper region of the first polysilicon layer is subsequently removed. A second polysilicon layer is formed on the first polysilicon layer. The second polysilicon layer and the first polysilicon layer are patterned to form the floating gate.
    Type: Application
    Filed: September 30, 2005
    Publication date: April 6, 2006
    Inventors: Won-Jun Jang, Jung-Hwan Kim, Jai-Dong Lee, Young-sub You, Sang-Hun Lee, Hun-Hyeoung Leam
  • Publication number: 20060068547
    Abstract: A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
    Type: Application
    Filed: July 11, 2005
    Publication date: March 30, 2006
    Inventors: Sang-Hoon Lee, Hun-Hyeoung Leam, Jai-Dong Lee, Jung-Hwan Kim, Young-Sub You, Ki-Su Na, Woong Lee, Yong-Sun Lee, Won-Jun Jang
  • Patent number: 7007933
    Abstract: A method for supplying a source gas to a processing chamber for forming a film on a substrate in the processing chamber includes: heating a carrier gas; bubbling the heated carrier gas in a liquid source disposed in a container to form a vapor source; and supplying a source gas including the vapor source and the heated carrier gas into the processing chamber for forming the film.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: March 7, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jai-Dong Lee, Ki-Hyun Hwang, Chang-Hyun Ko
  • Publication number: 20060003509
    Abstract: In an embodiment, a method of forming a gate structure for a semiconductor device includes forming a preliminary gate structure on a semiconductor substrate. The preliminary gate structure includes a gate oxide pattern and a conductive pattern sequentially stacked on the substrate. Then, a re-oxidation process is performed to the substrate having the preliminary gate structure using an oxygen radical including at least one oxygen atom, so that an oxide layer is formed on a surface of the substrate and sidewalls of the preliminary gate structure to form the gate structure for a semiconductor device. The thickness of the gate oxide pattern is prevented from increasing, and the quality of the oxide layer is improved.
    Type: Application
    Filed: July 5, 2005
    Publication date: January 5, 2006
    Inventors: Woong Lee, Young-Sub You, Hun-Hyeoung Leam, Yong-Woo Hyung, Jai-Dong Lee, Ki-Su Na, Jung-Hwan Kim
  • Publication number: 20050277248
    Abstract: In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
    Type: Application
    Filed: April 15, 2005
    Publication date: December 15, 2005
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Jai-Dong Lee, Young-Seok Kim, Young-Sub You, Ki-Su Na, Woong Lee
  • Publication number: 20050266640
    Abstract: A method of forming a dielectric layer having a reduced thickness according to embodiments of the invention includes forming a lower oxide layer on a substrate, and forming a nitride layer on the lower oxide layer. Then, a preliminary oxide layer is formed on the nitride layer. A radical oxidation process using oxygen radicals is performed on the preliminary oxide layer to form an upper oxide layer on the nitride layer. The dielectric layer includes an ONO composite layer consisting of the lower oxide layer, the nitride layer, and the upper oxide layer. Due to the decreased thickness of the dielectric layer, the dielectric layer has an improved capacitance and an increased coupling coefficient.
    Type: Application
    Filed: May 6, 2005
    Publication date: December 1, 2005
    Inventors: Young-Sub You, Woong Lee, Hun-Hyeoung Leam, Hyeon-Deok Lee, Ki-Su Na, Yong-Woo Hyung, Jai-Dong Lee
  • Publication number: 20050153514
    Abstract: A method for manufacturing a dielectric layer structure for a non-volatile memory cell is provided. A method includes forming a first dielectric layer for tunneling on a semiconductor substrate, a second dielectric layer on the first dielectric layer to store charges, nitrogenizing surface of the second dielectric layer, and forming a third dielectric layer the nitridedsecond dielectric layer.
    Type: Application
    Filed: January 12, 2005
    Publication date: July 14, 2005
    Inventors: Jai-Dong Lee, Ki-Chul Kim, In-Wook Cho
  • Publication number: 20050153513
    Abstract: A method of forming a dielectric layer for a non-volatile memory cell is disclosed. According to the method, a dielectric layer is formed by successively forming a lower oxide layer, a nitride layer and an upper oxide layer on a semiconductor substrate. The lower and upper oxide layers are formed using a radical oxidation process. A method of forming a non-volatile memory cell having the dielectric layer is also disclosed.
    Type: Application
    Filed: November 22, 2004
    Publication date: July 14, 2005
    Inventors: Woong Lee, Young-Sub You, Hun-Hyeoung Leam, Ki-Su Na, Man-Sug Kang, Jung-Hwan Kim, Jai-Dong Lee
  • Publication number: 20050101143
    Abstract: In a method of forming a shallow trench isolation (STI) region in a semiconductor device, a pad oxide layer and a pad nitride layer may be formed on a semiconductor substrate. The pad nitride layer and pad oxide layer may be patterned to form an isolation region with exposed portions on the pad nitride layer, pad oxide layer and semiconductor substrate. A radical oxide layer may be formed on the exposed portions, and a trench may be formed in the isolation region by etching the semiconductor substrate and radical oxide layer. The STI region may be formed by filling an insulating layer in the trench.
    Type: Application
    Filed: August 5, 2004
    Publication date: May 12, 2005
    Inventors: Seung-Jae Lee, Min Kim, Jai-Dong Lee, Kyoung-Seok Kim, Hyeon-Deok Lee, Ju-Bum Lee, Hun-Hyeoung Leam