Patents by Inventor Jaiganesh Balakrishnan

Jaiganesh Balakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230336200
    Abstract: A wireless receiver includes a down converter module operable to deliver a signal having a signal bandwidth that changes over time, a dynamically controllable filter module having a filter bandwidth and fed by said down converter module, and a measurement module operable to at least approximately measure the signal bandwidth, said dynamically controllable filter module responsive to said measurement module to dynamically adjust the filter bandwidth to more nearly match the signal bandwidth as it changes over time, whereby output from said filter module is noise-reduced. Other wireless receivers, electronic circuits, and processes for their operation are disclosed.
    Type: Application
    Filed: May 17, 2023
    Publication date: October 19, 2023
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Jaiganesh Balakrishnan
  • Patent number: 11757475
    Abstract: A radio-frequency (RF) sampling transmitter (e.g., of the type that may be used in 5G wireless base stations) includes a complex baseband digital-to-analog converter (DAC) response compensator that operates on a complex baseband signal at a sampling rate lower than the sampling rate of an RF sampling DAC in the RF sampling transmitter. The DAC response compensator flattens the sample-and-hold response of the RF sampling DAC only in the passband of interest, addressing the problem of a sin c response introduced by the sample-and-hold operation of the RF sampling DAC and avoiding the architectural complexity and high power consumption of an inverse sin c filter that operates on the signal at a point in the signal chain after it has already been up-converted to an RF passband.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: September 12, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jaiganesh Balakrishnan, Sriram Murali, Sundarrajan Rangachari, Yeswanth Guntupalli
  • Publication number: 20230275594
    Abstract: An example apparatus includes: nonlinearity function selection circuitry with an output, the nonlinearity function selection circuitry to select a type of a nonlinearity function, the nonlinearity function to model nonlinearity portions of data output from an analog-to-digital converter, nonlinearity function term generation circuitry with a first input coupled to the output, the nonlinearity function term generation circuitry to generate one or more nonlinearity function terms of the nonlinearity function based on the type of the nonlinearity function and the data, and coefficient determination circuitry with a second input coupled to the output, the coefficient determination circuitry to determine one or more nonlinearity function coefficients based on the one or more nonlinearity function terms, the nonlinearity portions of the data to be compensated based on the one or more nonlinearity function coefficients.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 31, 2023
    Inventors: Pankaj Gupta, Ajai Paulose, Sreenath Narayanan Potty, Divyansh Jain, Jaiganesh Balakrishnan, Jawaharlal Tangudu, Aswath VS, Girish Nadiger, Ankur Jain
  • Patent number: 11736138
    Abstract: A digital up-converter (DUC) includes conjugate-mixer-combiner. The conjugate-mixer-combiner includes a pre-combiner configured to generate combinations of a first in-phase (I) value to be transmitted at a first frequency of a first frequency band, a first quadrature (Q) value to be transmitted at the first frequency of a first frequency band, a second I value for to be transmitted at a second frequency of a second frequency band, and a second Q value to be transmitted at the second frequency of a second frequency band. The conjugate-mixer-combiner further includes a plurality of multipliers collectively configured to shift the combinations based on an average difference between the first frequency and the second frequency.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: August 22, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sriram Murali, Jaiganesh Balakrishnan, Pooja Sundar, Harshavardhan Adepu, Wenjing Lu, Yeswanth Guntupalli
  • Patent number: 11695602
    Abstract: A digital down converter (DDC) that improves efficiency by taking advantage of the periodicity of the coarse mixing process and the memory inherent in the convolution operation performed by decimation filters. In embodiments, the DDC filters and decimates a received signal to generate subfilter outputs and coarse mixes the subfilter outputs for each frequency band of interest. Accordingly, the DDC eliminates the need for separate decimation filters for each of the in-phase (I-phase) and quadrature (Q-phase) signals of each frequency band. In some embodiments, for each frequency band, the DDC combines the subfilter outputs into partial sums for each of the I- and Q-phases. In some of those embodiments, the coarse mixing operation is performed by multiplying the partial sums by real multiplicands and performing a simple post-rotation operation. In those embodiments, the DDC significantly reduces the number of multiplication operations required to perform the coarse mixing process.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: July 4, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Jaiganesh Balakrishnan, Nagalinga Swamy Basayya Aremallapur, Aswath Vs
  • Patent number: 11695440
    Abstract: A wireless receiver (10) includes a down converter module (210) operable to deliver a signal having a signal bandwidth that changes over time, a dynamically controllable filter module (200) having a filter bandwidth and fed by said down converter module (210), and a measurement module (295) operable to at least approximately measure the signal bandwidth, said dynamically controllable filter module (200) responsive to said measurement module (295) to dynamically adjust the filter bandwidth to more nearly match the signal bandwidth as it changes over time, whereby output from said filter module (200) is noise-reduced. Other wireless receivers, electronic circuits, and processes for their operation are disclosed.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: July 4, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Jaiganesh Balakrishnan
  • Patent number: 11689316
    Abstract: A transmitter includes a data stream encoder layer having an output and a pattern generator having a bit pattern output. The transmitter further includes a first multiplexer having first and second inputs and a first multiplexer output. The first input is coupled to the output of the data stream encoder layer, and the second input is coupled to the bit pattern output of the pattern generator. While at least a portion of the data stream encoder layer is powered down, the pattern generator is configured to provide bit patterns on its bit pattern output, a control signal to the first multiplexer is configured to select the second input of the first multiplexer, and the first multiplexer is configured to output the bit patterns on the output of the first multiplexer.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: June 27, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sanjay Pennam, Vamsi Krishna Kandalla, Brahmendra Reddy Yatham, Shailesh Wardhen, Jaiganesh Balakrishnan, Jawaharlal Tangudu
  • Patent number: 11581873
    Abstract: Dual mode filters having two reconfigurable multi-stage filters. In a dual band mode, each reconfigurable filter filters an input signal in a different band using every filter stage. In a single band mode, both reconfigurable filters are effectively divided into two sub-chains that include either the odd-numbered filter stages or the even-numbered filter stages. Together, the four sub-chains in the single band mode filter an input signal in a single band with a higher parallelization than each reconfigurable filter in the dual band mode. In some embodiments, the dual mode filter is a decimation filter. In other embodiments, the dual mode filter is a resampling filter. In still other embodiments, the dual mode filter is an interpolation filter.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: February 14, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jaiganesh Balakrishnan, Sriram Murali, Kalyan Gudipati, Venkateshwara Reddy Pothapu, Sarma Sundareswara Gunturi
  • Patent number: 11533068
    Abstract: A radio frequency transmitter includes an upconverter that outputs in-phase (I) and quadrature (Q) signals, a digital timing offset circuit, first and second digital-to-analog converters (DACs), an analog timing offset removal circuit, first and second pulse shapers, and an adder. The digital timing offset circuit introduces a time offset between the I and Q signals. The first and second DACs output analog I and Q signals, respectively, and have first and second clock signals, respectively. The first and second clock signals have the same frequency and are offset relative to each other by the time offset. The analog timing offset removal circuit removes the time offset between the analog I and Q signals. The first and second pulse shapers receive the analog I and Q signals, respectively, and output pulse-shaped I and Q signals. The adder receives the pulse-shaped I and Q signals and outputs an intermediate frequency signal.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: December 20, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rahul Sharma, Karthikeyan Gunasekaran, Sarma Sundareswara Gunturi, Ram Narayan Krishna Nama Mony, Jaiganesh Balakrishnan, Sandeep Kesrimal Oswal, Visvesvaraya Pentakota
  • Patent number: 11509291
    Abstract: A zero-insertion FIR filter architecture for filtering a signal with a target band and a secondary band. Digital filter circuitry includes an L-tap FIR (finite impulse response) filter, with a number L filter tap elements (L=0, 1, 2, . . . (L?1)), each with an assigned coefficient from a defined coefficient sequence. The L-tap FIR filter is configurable with a defined zero-insertion coefficient sequence of a repeating sub-sequence of a nonzero coefficient followed by one or more zero-inserted coefficients, with a number Nj of nonzero coefficients, and a number Nk of zero-inserted coefficients, so that L=Nj+Nk. The L-tap FIR filter is configurable as an M-tap FIR filter with a nonzero coefficient sequence in which each of the L filter tap elements is assigned a non-zero coefficient, the M-tap FIR filter having an effective length of M=(Nj+Nk) non-zero coefficients.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 22, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jawaharlal Tangudu, Jaiganesh Balakrishnan
  • Patent number: 11489517
    Abstract: A circuit includes a noise generator and a delay element. The output of the noise generator couples to the input of the delay element. The output of the delay element is coupled to a first input of a logic circuit, and the output of the noise generator is coupled to a second input of the logic circuit. The output of the logic circuit is coupled to a first control input of a waveform storage circuit. The waveform storage circuit is configured to produce a first digital waveform on its output responsive to a first logic state on the output of the logic circuit and to produce a second digital waveform on its output responsive to a second logic state on the output of the logic circuit. A sequencer has a sequencer output coupled to the second control input of the waveform storage circuit.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 1, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sriram Murali, Jaiganesh Balakrishnan, Ram Narayan Krishna Nama Mony, Pooja Sundar
  • Patent number: 11469784
    Abstract: One example includes a receiver system. The receiver system includes an analog-to-digital converter (ADC) configured to convert an analog input signal into a digital output signal at a sampling frequency. The receiver system also includes a spur correction system configured to receive the digital output signal and to estimate spurs associated with the digital output signal and to selectively correct a subset of the spurs associated with a set of frequencies that are based on the sampling frequency.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: October 11, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aswath Vs, Sthanunathan Ramakrishnan, Sriram Murali, Sarma Sundareswara Gunturi, Jaiganesh Balakrishnan, Sashidharan Venkatraman
  • Publication number: 20220231667
    Abstract: Dual mode filters having two reconfigurable multi-stage filters. In a dual band mode, each reconfigurable filter filters an input signal in a different band using every filter stage. In a single band mode, both reconfigurable filters are effectively divided into two sub-chains that include either the odd-numbered filter stages or the even-numbered filter stages. Together, the four sub-chains in the single band mode filter an input signal in a single band with a higher parallelization than each reconfigurable filter in the dual band mode. In some embodiments, the dual mode filter is a decimation filter. In other embodiments, the dual mode filter is a resampling filter. In still other embodiments, the dual mode filter is an interpolation filter.
    Type: Application
    Filed: August 31, 2021
    Publication date: July 21, 2022
    Inventors: Jaiganesh BALAKRISHNAN, Sriram MURALI, Kalyan GUDIPATI, Venkateshwara Reddy POTHAPU, Sarma Sundareswara GUNTURI
  • Publication number: 20220229961
    Abstract: A system for programming an eFuse array in an integrated circuit (IC) includes an eFuse data file which has a first plurality of bits. The system includes a data compression module which has an input coupled to receive the eFuse data file. The data compression module reduces the size of the eFuse data file and provides a compressed data file. The compressed data file has fewer bits than the eFuse data file. The system includes an eFuse controller which has an input coupled to receive the compressed data file. The eFuse controller programs the eFuse array to permanently store the compressed data file in the eFuse array.
    Type: Application
    Filed: August 25, 2021
    Publication date: July 21, 2022
    Inventors: Ajai Paulose, Aravind Ganesan, Sashidharan Venkatraman, Jaiganesh Balakrishnan
  • Publication number: 20220209807
    Abstract: A wireless receiver (10) includes a down converter module (210) operable to deliver a signal having a signal bandwidth that changes over time, a dynamically controllable filter module (200) having a filter bandwidth and fed by said down converter module (210), and a measurement module (295) operable to at least approximately measure the signal bandwidth, said dynamically controllable filter module (200) responsive to said measurement module (295) to dynamically adjust the filter bandwidth to more nearly match the signal bandwidth as it changes over time, whereby output from said filter module (200) is noise-reduced. Other wireless receivers, electronic circuits, and processes for their operation are disclosed.
    Type: Application
    Filed: November 18, 2021
    Publication date: June 30, 2022
    Inventor: Jaiganesh Balakrishnan
  • Publication number: 20220182098
    Abstract: A technique for reinitializing a coupled circuit, the technique including receiving a common configuration value associated with states of a coupled circuit, tracking states associated with the coupled circuit while the coupled circuit is in a low power state based on the common configuration value, receiving the tracked state associated with the coupled circuit, receiving a scaling value associated with the coupled circuit, determining a current state of the coupled circuit based on the tracked state and the scaling value, and transmitting an indication of the current state to the coupled circuit when the coupled circuit has exited the low power state.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 9, 2022
    Inventors: Sundarrajan RANGACHARI, Nagalinga Swamy Basayya AREMALLAPUR, Kalyan GUDIPATI, Divyeshkumar Mahendrabhai PATEL, Venkateshwara Reddy POTHAPU, Aravind VIJAYAKUMAR, Sarma Sundareswara GUNTURI, Jaiganesh BALAKRISHNAN
  • Patent number: 11356125
    Abstract: An integrated circuit comprises an input, a digital step attenuator, an analog-to-digital converter, a first output, a second output, a first bandwidth filter, a first band attack detector, a first band decay detector, a second bandwidth filter, a second band attack detector, a second band decay detector, and an automatic gain control. The ADC is configured to output a digital signal including a first and a second frequency range. The first and second bandwidth filters are configured to extract respective digital signals comprising the first and second frequency ranges. The band attack and decay detectors are configured to detect band peaks or decays thereof such that the DSA and External AMP may be controlled by means of the AGC based on the detected band peaks or decays, and ADC attack and ADC decay.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: June 7, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jawaharlal Tangudu, Yeswanth Guntupalli, Kalyan Gudipati, Robert Clair Keller, Wenjing Lu, Jaiganesh Balakrishnan, Harsh Garg, Bragadeesh S, Raju Kharataram Chaudhari, Francesco Dantoni
  • Publication number: 20220173947
    Abstract: A digital down converter (DDC) that improves efficiency by taking advantage of the periodicity of the coarse mixing process and the memory inherent in the convolution operation performed by decimation filters. In embodiments, the DDC filters and decimates a received signal to generate subfilter outputs and coarse mixes the subfilter outputs for each frequency band of interest. Accordingly, the DDC eliminates the need for separate decimation filters for each of the in-phase (I-phase) and quadrature (Q-phase) signals of each frequency band. In some embodiments, for each frequency band, the DDC combines the subfilter outputs into partial sums for each of the I- and Q-phases. In some of those embodiments, the coarse mixing operation is performed by multiplying the partial sums by real multiplicands and performing a simple post-rotation operation. In those embodiments, the DDC significantly reduces the number of multiplication operations required to perform the coarse mixing process.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 2, 2022
    Inventors: Jaiganesh BALAKRISHNAN, Nagalinga Swamy Basayya AREMALLAPUR, Aswath VS
  • Publication number: 20220116030
    Abstract: A circuit includes a noise generator and a delay element. The output of the noise generator couples to the input of the delay element. The output of the delay element is coupled to a first input of a logic circuit, and the output of the noise generator is coupled to a second input of the logic circuit. The output of the logic circuit is coupled to a first control input of a waveform storage circuit. The waveform storage circuit is configured to produce a first digital waveform on its output responsive to a first logic state on the output of the logic circuit and to produce a second digital waveform on its output responsive to a second logic state on the output of the logic circuit. A sequencer has a sequencer output coupled to the second control input of the waveform storage circuit.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Sriram MURALI, Jaiganesh BALAKRISHNAN, Ram Narayan KRISHNA NAMA MONY, Pooja SUNDAR
  • Publication number: 20220066975
    Abstract: A circuit includes: a parallel data interface; and transition control circuitry coupled to the parallel data interface. The transition control circuitry is configured to: receive an input bit stream sample; determine a bit transformation pattern for the input bit stream sample in accordance with a target criteria; and generate an output bit stream symbol from the input bit stream sample and the bit transformation pattern, wherein the output bit stream symbol has more bits than the input bit stream sample.
    Type: Application
    Filed: June 30, 2021
    Publication date: March 3, 2022
    Inventors: Aravind GANESAN, Nagalinga Swamy Basayya AREMALLAPUR, Jaiganesh BALAKRISHNAN, Robert Clair KELLER