Patents by Inventor Jaime Gómez Rivas

Jaime Gómez Rivas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230205095
    Abstract: A method for determining one or more dimensions of one or more structures is disclosed. The method comprises focusing illumination light on a focal plane of a lens system so that the lens system forms a collimated illumination light beam that is incident on the sample surface. The method also comprises, using said lens system or, respectively, a further lens system, collecting reflected or, respectively, transmitted illumination light reflected from or transmitted through the sample surface. Further, the method comprises capturing an image of said focal plane or, respectively, further focal plane, said image representing a distribution in said focal plane or further focal plane of radiant power of the reflected or transmitted illumination light. A further step of the method comprises, based on the captured image, determining the one or more dimensions of the structures on the sample surface.
    Type: Application
    Filed: January 8, 2021
    Publication date: June 29, 2023
    Applicant: TERANOVA B.V.
    Inventors: Mohammad RAMEZANI, Jaime GÓMEZ RIVAS
  • Publication number: 20230051992
    Abstract: A light-emitting device includes a semiconductor diode structure and a multi-layer reflector (MLR) structure. The diode structure includes first and second doped semiconductor layers and an active layer between them; the active layer emits output light at a nominal emission vacuum wavelength ?0 to propagate within the diode structure. The MLR structure is positioned against a back surface of the second semiconductor layer, includes two or more layers of dielectric materials of two or more different refractive indices, reflects incident output light within the diode structure, and is in near-field proximity to the active layer relative to ?0. At least a portion of the output light, propagating perpendicularly within the diode structure relative to a device exit surface, exits the diode structure as device output light. The MLR structure can include scattering elements that scatter some laterally propagating output light to propagate perpendicularly.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 16, 2023
    Applicant: Lumileds LLC
    Inventors: Aleksandr Vaskin, Mohamed S. Abdelkhalik, Debapriya Pal, Jaime Gomez Rivas, Albert Femius Koenderink, Toni Lopez, Aimi Abass
  • Publication number: 20230049688
    Abstract: A light-emitting device includes a semiconductor diode structure, a surface-lattice-mode (SLR) structure against the back of the diode structure, and a reflector against the back of the SLR structure. The diode structure includes first and second doped semiconductor layers and an active layer between them; the active layer emits output light at a nominal emission vacuum wavelength ?0 to propagate within the diode structure. The SLR structure includes an index-matched layer, a lower-index layer, and scattering elements, and is in near-field proximity to the active layer relative to ?0. At least a portion of the output light, propagating perpendicularly within the diode structure relative to a device exit surface, exits the diode structure as device output light. The scattering elements redirect output light propagating within the device, including in laterally propagating surface-lattice-resonance modes supported by the SLR structure, to propagate perpendicularly toward the device exit surface.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 16, 2023
    Applicant: Lumileds LLC
    Inventors: Mohamed S. Abdelkhalik, Aleksandr Vaskin, Debapriya Pal, Jaime Gomez Rivas, Albert Femius Koenderink, Toni Lopez, Aimi Abass
  • Publication number: 20230049539
    Abstract: A light-emitting device includes a semiconductor diode structure, a quasi-guided-mode (QGM) structure against the back of the diode structure, and a reflector against the back of the QGM structure. The diode structure includes first and second doped semiconductor layers and an active layer between them; the active layer emits output light at a nominal emission vacuum wavelength ?0 to propagate within the diode structure. The QGM structure includes a waveguide layer, a cladding layer, and scattering elements, and is in near-field proximity to the active layer relative to ?0. At least a portion of the output light, propagating perpendicularly within the diode structure relative to a device exit surface, exits the diode structure as device output light. The scattering elements redirect output light propagating within the device, including in laterally propagating quasi-guided modes supported by the QGM structure, to propagate perpendicularly toward the device exit surface.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 16, 2023
    Applicant: Lumileds LLC
    Inventors: Aleksandr Vaskin, Mohamed S. Abdelkhalik, Debapriya Pal, Jaime Gomez Rivas, Albert Femius Koenderink, Toni Lopez, Aimi Abass
  • Patent number: 11561170
    Abstract: This disclosure relates to a method for measuring an electric field in the near-field region of an optically excited sample. The method includes optically exciting at least part of the sample. This step includes directing excitation light onto an interface between the sample and a medium. The excitation light is incident onto the interface under an angle of incidence such that total internal reflection of the excitation light occurs at the interface. The method further includes measuring the electric field using a terahertz near-field probe, wherein the terahertz near-field probe is positioned on one side of the interface and the excitation light approaches the interface on another side of the interface. This disclosure further relates to a system and computer program for measuring an electric field in the near-field region of an optically excited sample.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: January 24, 2023
    Inventors: Niels Jacobus Johan Van Hoof, Stan Erik Theodoor Ter Huurne, Henri-Alexei Halpin, Jaime Gómez Rivas, Arkabrata Bhattacharya, Georgios Georgiou
  • Publication number: 20210270733
    Abstract: This disclosure relates to a method for measuring an electric field in the near-field region of an optically excited sample. The method includes optically exciting at least part of the sample. This step includes directing excitation light onto an interface between the sample and a medium. The excitation light is incident onto the interface under an angle of incidence such that total internal reflection of the excitation light occurs at the interface. The method further includes measuring the electric field using a terahertz near-field probe, wherein the terahertz near-field probe is positioned on one side of the interface and the excitation light approaches the interface on another side of the interface. This disclosure further relates to a system and computer program for measuring an electric field in the near-field region of an optically excited sample.
    Type: Application
    Filed: June 28, 2019
    Publication date: September 2, 2021
    Applicant: TECHNISCHE UNIVERSITEIT EINDHOVEN
    Inventors: Niels Jacobus Johan VAN HOOF, Stan Erik Theodoor TER HUURNE, Henri-Alexei HALPIN, Jaime GÓMEZ RIVAS, Arkabrata BHATTACHARYA, Georgios GEORGIOU
  • Patent number: 10444412
    Abstract: There is provided an illumination device (100, 150, 200, 300) comprising: a periodic plasmonic antenna array (114), comprising a plurality of individual antenna elements (106) arranged in an antenna array plane, the plasmonic antenna array being configured to support surface lattice resonances at a first wavelength, arising from diffractive coupling of localized surface plasmon resonances in the individual antenna elements; a photon emitter (152) configured to emit photons at the first wavelength, the photon emitter being arranged in close proximity of the plasmonic antenna array such that at least a portion of the emitted photons are emitted by a coupled system comprising said photon emitter and said plasmonic antenna array, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes being out-of plane asymmetric, such that light emitted from the plasmonic antenna array has an anisotropic angle distribution.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: October 15, 2019
    Assignee: Lumileds LLC
    Inventors: Marcus Antonius Verschuuren, Said Rahimzadeh Kalaleh Rodriguez, Gabriel Sebastian Lozano Barbero, Sunsuke Murai, Jaime Gomez Rivas, Davy Louwers, Dirk Kornelis Gerhardus De Boer, Marius Gabriel Ivan, Rifat Ata Mustafa Hikmet, Ties Van Bommel
  • Patent number: 10018751
    Abstract: There is provided an illumination device (100) comprising: a substrate (104); an optically transmissive first layer (106) arranged on the substrate; a photon emitting layer (108), arranged on the optically transmissive first layer and comprising a photon emitting material configured to receive energy from an energy source and to emit light having a predetermined wavelength; a periodic plasmonic antenna array, arranged on the substrate and embedded within the first layer, and comprising a plurality of individual antenna elements (114) arranged in an antenna array plane, the plasmonic antenna array being configured to support a first lattice resonance at the predetermined wavelength, arising from coupling of localized surface plasmon resonances in the individual antenna elements to photonic modes supported by the system comprising the plasmonic antenna array and the photon emitting layer, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes such that light emitted from the plasm
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 10, 2018
    Assignee: Lumileds LLC
    Inventors: Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Jaime Gomez Rivas
  • Patent number: 9982850
    Abstract: Embodiments of the invention include a semiconductor light emitting device for emitting a first light at a first wavelength and a wavelength conversion medium arranged to convert at least part of the first light into a second light at a second wavelength. The wavelength conversion medium is disposed between a periodic antenna array and the semiconductor light emitting device. The periodic antenna array includes a plurality of antennas. The periodic antenna array supports surface lattice resonances arising from diffractive coupling of localized surface plasmon resonances in at least one of the antennas.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: May 29, 2018
    Assignee: Lumileds LLC
    Inventors: Said Rahimzadeh Kalaleh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai
  • Patent number: 9797556
    Abstract: The invention provides a lighting device having a photo-excited phosphor layer, with two monochromatic light beams (1, 1a, 1b) that counter propagate within the phosphor layer (2) thereby providing a destructive interference of the excitation light outside the phosphor layer (2). The excitation light source has an output wavelength greater than a peak absorption wavelength of the phosphor. This enables more efficient conversion of light and reduced heating.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: October 24, 2017
    Assignee: PHILIPS LIGHTING HOLDING B.V.
    Inventors: Giuseppe Pirruccio, Jaime Gomez Rivas
  • Publication number: 20170288098
    Abstract: Embodiments of the invention include a semiconductor light emitting device for emitting a first light at a first wavelength and a wavelength conversion medium arranged to convert at least part of the first light into a second light at a second wavelength. The wavelength conversion medium is disposed between a periodic antenna array and the semiconductor light emitting device. The periodic antenna array includes a plurality of antennas. The periodic antenna array supports surface lattice resonances arising from diffractive coupling of localized surface plasmon resonances in at least one of the antennas.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Inventors: Said Rahimzadeh Kalaleh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai
  • Patent number: 9647182
    Abstract: There is provided an illumination device (100) comprising an energy source (102) for exciting a photon emitter; a first wavelength conversion layer (104) and a second wavelength conversion layer (106). At least one of the first and second wavelength conversion layer comprises a periodic plasmonic antenna array comprising a plurality of individual antenna elements (108). The wavelength converting medium in the wavelength conversion layer in which the antenna array is arranged comprises photon emitters arranged in close proximity of the plasmonic antenna array such that at least a portion of photons emitted from the wavelength conversion layer are emitted by a coupled system comprising the photon emitter and the plasmonic antenna array.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: May 9, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Jaime Gómez Rivas, Dirk Kornelis Gerhardus De Boer, Rifat Ata Mustafa Hikmet, Ties Van Bommel
  • Publication number: 20170082785
    Abstract: There is provided an illumination device (100) comprising: a substrate (104); an optically transmissive first layer (106) arranged on the substrate; a photon emitting layer (108), arranged on the optically transmissive first layer and comprising a photon emitting material configured to receive energy from an energy source and to emit light having a predetermined wavelength; a periodic plasmonic antenna array, arranged on the substrate and embedded within the first layer, and comprising a plurality of individual antenna elements (114) arranged in an antenna array plane, the plasmonic antenna array being configured to support a first lattice resonance at the predetermined wavelength, arising from coupling of localized surface plasmon resonances in the individual antenna elements to photonic modes supported by the system comprising the plasmonic antenna array and the photon emitting layer, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes such that light emitted from the plasm
    Type: Application
    Filed: May 21, 2015
    Publication date: March 23, 2017
    Inventors: Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Jaime Gomez Rivas
  • Publication number: 20160363274
    Abstract: Embodiments of the invention include a semiconductor light emitting device for emitting a first light at a first wavelength and a wavelength conversion medium arranged to convert at least part of the first light into a second light at a second wavelength. The wavelength conversion medium is disposed between a periodic antenna array and the semiconductor light emitting device. The periodic antenna array includes a plurality of antennas. The periodic antenna array supports surface lattice resonances arising from diffractive coupling of localized surface plasmon resonances in at least one of the antennas.
    Type: Application
    Filed: July 22, 2016
    Publication date: December 15, 2016
    Inventors: Said Rahimzadeh Kalaleh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai
  • Publication number: 20160305620
    Abstract: The invention provides a lighting device having a photo-excited phosphor layer, with two monochromatic light beams (1, 1a, 1b) that counter propagate within the phosphor layer (2) thereby providing a destructive interference of the excitation light outside the phosphor layer (2). The excitation light source has an output wavelength greater than a peak absorption wavelength of the phosphor. This enables more efficient conversion of light and reduced heating.
    Type: Application
    Filed: October 21, 2014
    Publication date: October 20, 2016
    Inventors: GIUSEPPE PIRRUCCIO, JAIME GÓMEZ RIVAS
  • Patent number: 9416927
    Abstract: Embodiments of the invention include a semiconductor light emitting device for emitting a first light at a first wavelength and a wavelength conversion medium arranged to convert at least part of the first light into a second light at a second wavelength. The wavelength conversion medium is disposed between a periodic antenna array and the semiconductor light emitting device. The periodic antenna array includes a plurality of antennas. The periodic antenna array supports surface lattice resonances arising from diffractive coupling of localized surface plasmon resonances in at least one of the antennas.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 16, 2016
    Assignee: Koninklijke Philips N.V.
    Inventors: Said Rahimzadeh Kalaleh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai
  • Publication number: 20160190403
    Abstract: There is provided an illumination device (100) comprising an energy source (102) for exciting a photon emitter; a first wavelength conversion layer (104) and a second wavelength conversion layer (106). At least one of the first and second wavelength conversion layer comprises a periodic plasmonic antenna array comprising a plurality of individual antenna elements (108). The wavelength converting medium in the wavelength conversion layer in which the antenna array is arranged comprises photon emitters arranged in close proximity of the plasmonic antenna array such that at least a portion of photons emitted from the wavelength conversion layer are emitted by a coupled system comprising the photon emitter and the plasmonic antenna array.
    Type: Application
    Filed: July 22, 2014
    Publication date: June 30, 2016
    Inventors: Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Jaime Gómez Rivas, Dirk Kornelis Gerhardus De Boer, Rifat Ata Mustafa Hikmet, Ties Van Bommel
  • Publication number: 20160161644
    Abstract: There is provided an illumination device (100, 150, 200, 300) comprising: a periodic plasmonic antenna array (114), comprising a plurality of individual antenna elements (106) arranged in an antenna array plane, the plasmonic antenna array being configured to support surface lattice resonances at a first wavelength, arising from diffractive coupling of localized surface plasmon resonances in the individual antenna elements; a photon emitter (152) configured to emit photons at the first wavelength, the photon emitter being arranged in close proximity of the plasmonic antenna array such that at least a portion of the emitted photons are emitted by a coupled system comprising said photon emitter and said plasmonic antenna array, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes being out-of plane asymmetric, such that light emitted from the plasmonic antenna array has an anisotropic angle distribution.
    Type: Application
    Filed: July 23, 2014
    Publication date: June 9, 2016
    Inventors: Marcus Antonius Verschuuren, Said Rahimzadeh Kalaleh Rodriguez, Gabriel Sebastian Lozano Barbero, Sunsuke Murai, Jaime Gomez Rivas, Davy Louwers, Dirk Kornelis Gerhardus De Boer, Marius Gabriel Ivan, Rifat Ata Mustafa Hikmet, Ties Van Bommel
  • Publication number: 20160010813
    Abstract: Proposed is an illumination device (100), comprising a light source (110) such as an LED or a laser diode, a wavelength conversion medium (120) such as a phosphor, and a periodic antenna array (300) made of a highly polarisable material such as a metal. The light source emits primary wavelength light that at least partially is converted in secondary wavelength light by the wavelength conversion medium. The periodic antenna array is positioned in close proximity to the wavelength conversion medium and functions to enhance the efficiency of the absorption and/or emission processes in the wavelength conversion medium through the coupling of the incident primary wavelength light or the emitted secondary light to surface lattice resonances that arise from the diffractive coupling of localized surface plasmon polaritons in the individual antennas of the array.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 14, 2016
    Inventors: SAID RAHIMZADEH KALALEH RODRIGUEZ, JAIME GOMEZ RIVAS, ABRAHAM RUDOLF BALKENENDE, MARCUS ANTONIUS VERSCHUUREN, GABRIEL SEBASTIAN LOZANO BARBERO, SHUNSUKE MURAI
  • Patent number: 9157605
    Abstract: Proposed is an illumination device (100), comprising a light source (110) such as an LED or a laser diode, a wavelength conversion medium (120) such as a phosphor, and a periodic antenna array (300) made of a highly polarisable material such as a metal. The light source emits primary wavelength light that at least partially is converted in secondary wavelength light by the wavelength conversion medium. The periodic antenna array is positioned in close proximity to the wavelength conversion medium and functions to enhance the efficiency of the absorption and/or emission processes in the wavelength conversion medium through the coupling of the incident primary wavelength light or the emitted secondary light to surface lattice resonances that arise from the diffractive coupling of localized surface plasmon polaritons in the individual antennas of the array.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: October 13, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Said Rahimzadeh Kalaeh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai